論文の概要: Unifying Vision, Text, and Layout for Universal Document Processing
- arxiv url: http://arxiv.org/abs/2212.02623v1
- Date: Mon, 5 Dec 2022 22:14:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 15:31:12.324314
- Title: Unifying Vision, Text, and Layout for Universal Document Processing
- Title(参考訳): ユニバーサル文書処理のための視覚・テキスト・レイアウトの統合
- Authors: Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang
Zhu, Michael Zeng, Cha Zhang, Mohit Bansal
- Abstract要約: 本稿では,テキスト,画像,レイアウトのモダリティを文書理解と生成を含むさまざまなタスク形式とともに統合するドキュメントAIモデルを提案する。
我々の手法は、財務報告、学術論文、ウェブサイトなど、さまざまなデータ領域にまたがって、文書理解やQAといった9つのドキュメントAIタスクの最先端を定めている。
- 参考スコア(独自算出の注目度): 105.36490575974028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Universal Document Processing (UDOP), a foundation Document AI
model which unifies text, image, and layout modalities together with varied
task formats, including document understanding and generation. UDOP leverages
the spatial correlation between textual content and document image to model
image, text, and layout modalities with one uniform representation. With a
novel Vision-Text-Layout Transformer, UDOP unifies pretraining and multi-domain
downstream tasks into a prompt-based sequence generation scheme. UDOP is
pretrained on both large-scale unlabeled document corpora using innovative
self-supervised objectives and diverse labeled data. UDOP also learns to
generate document images from text and layout modalities via masked image
reconstruction. To the best of our knowledge, this is the first time in the
field of document AI that one model simultaneously achieves high-quality neural
document editing and content customization. Our method sets the
state-of-the-art on 9 Document AI tasks, e.g., document understanding and QA,
across diverse data domains like finance reports, academic papers, and
websites. UDOP ranks first on the leaderboard of the Document Understanding
Benchmark (DUE).
- Abstract(参考訳): 我々は,テキスト,画像,レイアウトのモダリティを文書理解と生成を含むさまざまなタスク形式とともに統合する基盤ドキュメントAIモデルであるUniversal Document Processing (UDOP)を提案する。
UDOPは、テキストコンテンツと文書画像の空間的相関を利用して、1つの一様表現で画像、テキスト、レイアウトのモダリティをモデル化する。
新しいVision-Text-Layout Transformerにより、UDOPはプリトレーニングタスクとマルチドメイン下流タスクをプロンプトベースのシーケンス生成スキームに統合する。
UDOPは、革新的な自己管理目的と多様なラベル付きデータを用いて、大規模未ラベルの文書コーパスで事前訓練されている。
UDOPはまた、テキストとレイアウトのモダリティから文書画像を生成することを学ぶ。
私たちの知る限りでは、あるモデルが高品質なニューラル文書編集とコンテンツのカスタマイズを同時に達成するのは、ドキュメントAIの分野で初めてです。
我々の手法は、財務報告、学術論文、ウェブサイトなど、さまざまなデータ領域にまたがって、文書理解やQAといった9つのドキュメントAIタスクを最先端に設定する。
UDOPはDocument Understanding Benchmark (DUE)のリーダーボードにランクインしている。
関連論文リスト
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
我々は、異なるモダリティでインターリーブされた文書を均等に埋め込み、より包括的でニュアンスのある文書表現を生成する。
具体的には、テキスト、画像、テーブルの処理と統合を統一されたフォーマットと表現に統合する、近年のビジョン言語モデルの能力を活用して、これを実現する。
論文 参考訳(メタデータ) (2024-10-03T17:49:09Z) - Contextual Document Embeddings [77.22328616983417]
本稿では,コンテキスト化された文書埋め込みのための2つの補完手法を提案する。
第一に、文書近傍を明示的にバッチ内コンテキスト損失に組み込む別のコントラスト学習目標である。
第二に、隣接する文書情報をエンコードされた表現に明示的にエンコードする新しいコンテキストアーキテクチャ。
論文 参考訳(メタデータ) (2024-10-03T14:33:34Z) - Visually Guided Generative Text-Layout Pre-training for Document Intelligence [51.09853181377696]
視覚誘導型生成テキスト事前学習(ViTLP)を提案する。
文書画像が与えられた場合、モデルは階層言語とレイアウトモデリングの目的を最適化し、インターリーブされたテキストとレイアウトシーケンスを生成する。
ViTLPは、文書画像のテキストをローカライズし、認識するためのネイティブなOCRモデルとして機能する。
論文 参考訳(メタデータ) (2024-03-25T08:00:43Z) - Hierarchical Multimodal Pre-training for Visually Rich Webpage
Understanding [22.00873805952277]
WebLMは、WebページにおけるHTMLの構造的モダリティとテキストのみをモデリングする制限に対処するために設計されたマルチモーダル事前学習ネットワークである。
本稿では,テキスト,構造,画像モダリティ間の相互作用を効果的にモデル化するための事前学習タスクを提案する。
実験の結果、事前学習されたWebLMは、いくつかのWebページ理解タスクにおいて、従来の最先端の事前学習モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-02-28T11:50:36Z) - DUBLIN -- Document Understanding By Language-Image Network [37.42637168606938]
3つの新しい目的を用いて,Webページ上で事前学習を行うDUBLINを提案する。
DUBLIN は WebSRC データセット上で 77.75 の EM と 84.25 の F1 を達成した最初のピクセルベースモデルであることを示す。
また、RVL-CDIP文書分類における競合性能も達成する。
論文 参考訳(メタデータ) (2023-05-23T16:34:09Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
文書理解のための統合事前学習フレームワークであるUDocを紹介する。
UDocは、ほとんどのドキュメント理解タスクをサポートするように設計されており、Transformerを拡張してマルチモーダル埋め込みを入力とする。
UDocの重要な特徴は、3つの自己管理的損失を利用して汎用的な表現を学ぶことである。
論文 参考訳(メタデータ) (2022-04-22T21:47:04Z) - LayoutLMv3: Pre-training for Document AI with Unified Text and Image
Masking [83.09001231165985]
テキストと画像のマスキングを併用した文書AIのためのマルチモーダルトランスフォーマーを事前学習するためのLayoutLMv3を提案する。
単純な統一アーキテクチャとトレーニングの目的により、LayoutLMv3はテキスト中心および画像中心のDocument AIタスクの汎用的な事前トレーニングモデルになる。
論文 参考訳(メタデータ) (2022-04-18T16:19:52Z) - Towards a Multi-modal, Multi-task Learning based Pre-training Framework
for Document Representation Learning [5.109216329453963]
本稿では,新しい事前学習タスクとして,文書トピックモデリングと文書シャッフル予測を導入する。
本稿では,Longformer ネットワークアーキテクチャをバックボーンとして,複数ページの文書からのマルチモーダル情報をエンド・ツー・エンドで符号化する。
論文 参考訳(メタデータ) (2020-09-30T05:39:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。