論文の概要: Visually Guided Generative Text-Layout Pre-training for Document Intelligence
- arxiv url: http://arxiv.org/abs/2403.16516v2
- Date: Wed, 27 Mar 2024 12:32:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 11:48:28.228009
- Title: Visually Guided Generative Text-Layout Pre-training for Document Intelligence
- Title(参考訳): 文書インテリジェンスのためのビジュアルガイド生成テキストレイアウト事前学習
- Authors: Zhiming Mao, Haoli Bai, Lu Hou, Jiansheng Wei, Xin Jiang, Qun Liu, Kam-Fai Wong,
- Abstract要約: 視覚誘導型生成テキスト事前学習(ViTLP)を提案する。
文書画像が与えられた場合、モデルは階層言語とレイアウトモデリングの目的を最適化し、インターリーブされたテキストとレイアウトシーケンスを生成する。
ViTLPは、文書画像のテキストをローカライズし、認識するためのネイティブなOCRモデルとして機能する。
- 参考スコア(独自算出の注目度): 51.09853181377696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prior study shows that pre-training techniques can boost the performance of visual document understanding (VDU), which typically requires models to gain abilities to perceive and reason both document texts and layouts (e.g., locations of texts and table-cells). To this end, we propose visually guided generative text-layout pre-training, named ViTLP. Given a document image, the model optimizes hierarchical language and layout modeling objectives to generate the interleaved text and layout sequence. In addition, to address the limitation of processing long documents by Transformers, we introduce a straightforward yet effective multi-segment generative pre-training scheme, facilitating ViTLP to process word-intensive documents of any length. ViTLP can function as a native OCR model to localize and recognize texts of document images. Besides, ViTLP can be effectively applied to various downstream VDU tasks. Extensive experiments show that ViTLP achieves competitive performance over existing baselines on benchmark VDU tasks, including information extraction, document classification, and document question answering.
- Abstract(参考訳): 以前の研究では、事前学習技術が視覚的文書理解(VDU)の性能を向上させることが示されており、通常は、文書テキストとレイアウト(例えば、テキストの位置やテーブルセル)の両方を知覚し、推論する能力を持つモデルを必要とする。
そこで本稿では,ViTLPと名づけられた生成テキストの事前学習を視覚的に指導する手法を提案する。
文書画像が与えられた場合、モデルは階層言語とレイアウトモデリングの目的を最適化し、インターリーブされたテキストとレイアウトシーケンスを生成する。
また,トランスフォーマーによる長文処理の制限に対処するため,VTLPが任意の長さの単語集約文書を処理できるように,単純かつ効果的な多節生成事前学習方式を導入する。
ViTLPは、文書画像のテキストをローカライズし、認識するためのネイティブなOCRモデルとして機能する。
さらに、VTLPは様々な下流VDUタスクに効果的に適用できる。
大規模な実験により、VTLPは、情報抽出、文書分類、文書質問応答など、既存のVDUタスクのベースラインよりも競合する性能を達成している。
関連論文リスト
- ColPali: Efficient Document Retrieval with Vision Language Models [15.369861972085136]
複数のドメイン、言語、設定にまたがる様々なページレベルの検索タスクで構成されるVisual Document Retrieval Benchmark ViDoReを紹介する。
現代のシステムの固有の欠点は、新しい検索モデルアーキテクチャであるColPaliの導入を動機付けている。
ColPaliは最新のドキュメント検索パイプラインよりも大幅に高速で、エンドツーエンドのトレーニングが可能である。
論文 参考訳(メタデータ) (2024-06-27T15:45:29Z) - Focus Anywhere for Fine-grained Multi-page Document Understanding [24.76897786595502]
本稿では,LVLMを単ページ/複数ページの文書に注目する上で,効果的パイプライン,ハイブリッドデータ,チューニング戦略であるFoxを提案する。
我々は、複数の視覚語彙を用いて、インターリーブされた文書ページの視覚的ハイブリッド知識を抽出する。
我々は、複数の視覚語彙と文書内図形理解の完全な反応を達成するために、複数の語彙間の視覚データを前景として描画する。
論文 参考訳(メタデータ) (2024-05-23T08:15:49Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
文書オブジェクト協調学習(Document Object Contrastive Learning, DoCo)と呼ばれる対照的な学習フレームワークを提案する。
DoCoは補助的なマルチモーダルエンコーダを利用して文書オブジェクトの特徴を取得し、それをLVLM(Large Visual-Language Models)の視覚エンコーダによって生成された視覚的特徴に合わせる。
提案するDoCoは,様々なLVLMの事前学習において,推論過程における計算複雑性の増大を招くことなく,プラグイン・アンド・プレイの事前学習手法として機能することが実証された。
論文 参考訳(メタデータ) (2024-02-29T10:17:27Z) - LAPDoc: Layout-Aware Prompting for Documents [3.523208537466128]
そこで本研究では,テキストベースのLLMを文書固有のタスクに使用する可能性について,レイアウトエンリッチメントを用いて検討する。
その結果,レイアウトの充実により,文書理解のためのテキストベースのLLMの性能が最大15%向上することが示唆された。
論文 参考訳(メタデータ) (2024-02-15T10:00:49Z) - Text-based Person Search without Parallel Image-Text Data [52.63433741872629]
テキストベースの人物探索(TBPS)は,対象者の画像を与えられた自然言語記述に基づいて大きな画像ギャラリーから検索することを目的としている。
既存の手法は、並列画像テキストペアによるトレーニングモデルによって支配されており、収集には非常にコストがかかる。
本稿では,並列画像テキストデータなしでTBPSを探索する試みについて述べる。
論文 参考訳(メタデータ) (2023-05-22T12:13:08Z) - Exploiting the Textual Potential from Vision-Language Pre-training for
Text-based Person Search [17.360982091304137]
テキストベースPerson Search(TPS)は、歩行者を検索画像の代わりにテキスト記述にマッチさせることを目的としている。
最近のビジョンランゲージ事前学習モデルは、下流のTPSタスクに伝達可能な知識をもたらすことができ、より効率的なパフォーマンス向上をもたらす。
しかし、既存のTPS手法では、学習済みのビジュアルエンコーダのみを使用し、対応するテキスト表現を無視している。
論文 参考訳(メタデータ) (2023-03-08T10:41:22Z) - Unifying Vision, Text, and Layout for Universal Document Processing [105.36490575974028]
本稿では,テキスト,画像,レイアウトのモダリティを文書理解と生成を含むさまざまなタスク形式とともに統合するドキュメントAIモデルを提案する。
我々の手法は、財務報告、学術論文、ウェブサイトなど、さまざまなデータ領域にまたがって、文書理解やQAといった9つのドキュメントAIタスクの最先端を定めている。
論文 参考訳(メタデータ) (2022-12-05T22:14:49Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
文書理解のための統合事前学習フレームワークであるUDocを紹介する。
UDocは、ほとんどのドキュメント理解タスクをサポートするように設計されており、Transformerを拡張してマルチモーダル埋め込みを入力とする。
UDocの重要な特徴は、3つの自己管理的損失を利用して汎用的な表現を学ぶことである。
論文 参考訳(メタデータ) (2022-04-22T21:47:04Z) - Towards a Multi-modal, Multi-task Learning based Pre-training Framework
for Document Representation Learning [5.109216329453963]
本稿では,新しい事前学習タスクとして,文書トピックモデリングと文書シャッフル予測を導入する。
本稿では,Longformer ネットワークアーキテクチャをバックボーンとして,複数ページの文書からのマルチモーダル情報をエンド・ツー・エンドで符号化する。
論文 参考訳(メタデータ) (2020-09-30T05:39:04Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
我々は、テキストスタイルの転送とは逆の文書スケールのテキストコンテンツ操作という、新しい実践的なタスクに焦点を当てる。
詳細は、入力は構造化されたレコードと、別のレコードセットを記述するための参照テキストのセットである。
出力は、ソースレコードセットの部分的内容と参照の書き込みスタイルを正確に記述した要約である。
論文 参考訳(メタデータ) (2020-02-24T12:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。