論文の概要: Improved Beam Search for Hallucination Mitigation in Abstractive
Summarization
- arxiv url: http://arxiv.org/abs/2212.02712v1
- Date: Tue, 6 Dec 2022 02:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 15:30:53.596903
- Title: Improved Beam Search for Hallucination Mitigation in Abstractive
Summarization
- Title(参考訳): 抽象要約における幻覚緩和のためのビーム探索の改善
- Authors: Arvind Krishna Sridhar, Erik Visser
- Abstract要約: 本稿では,要約生成における幻覚の検出と防止を目的とした自然言語推論(NLI)の指標について検討する。
本研究では,入力コンテキストと要約モデル生成ビーム間の包含確率スコアを計算し,NLIを用いたビーム再ランク付け機構を提案する。
提案アルゴリズムは,XSumおよびCNN/DMデータセット上でバニラビームデコーディングを著しく上回っている。
- 参考スコア(独自算出の注目度): 0.2538209532048867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancement in large pretrained language models has significantly improved
their performance for conditional language generation tasks including
summarization albeit with hallucinations. To reduce hallucinations,
conventional methods proposed improving beam search or using a fact checker as
a postprocessing step. In this paper, we investigate the use of the Natural
Language Inference (NLI) entailment metric to detect and prevent hallucinations
in summary generation. We propose an NLI-assisted beam re-ranking mechanism by
computing entailment probability scores between the input context and
summarization model-generated beams during saliency-enhanced greedy decoding.
Moreover, a diversity metric is introduced to compare its effectiveness against
vanilla beam search. Our proposed algorithm significantly outperforms vanilla
beam decoding on XSum and CNN/DM datasets.
- Abstract(参考訳): 大きな事前訓練された言語モデルの進歩は、幻覚を伴う要約を含む条件付き言語生成タスクのパフォーマンスを著しく改善した。
幻覚を低減するため、ビーム探索の改善やファクトチェッカーを後処理ステップとして用いる方法が提案されている。
本稿では,要約生成における幻覚の検出と防止を目的とした自然言語推論(NLI)の指標について検討する。
本研究では, 入力コンテキストと要約モデル生成ビーム間の包含確率スコアを算定し, NLIを用いたビーム再分類機構を提案する。
さらに,バニラビームサーチの有効性を比較するために,多様性指標を導入した。
提案アルゴリズムは,XSumおよびCNN/DMデータセット上でバニラビームデコーディングを著しく上回っている。
関連論文リスト
- Pre-Training Multimodal Hallucination Detectors with Corrupted Grounding Data [4.636499986218049]
マルチモーダル言語モデルは、その出力に幻覚を示し、信頼性を制限できる。
本稿では, 崩壊した地盤データを作成することにより, これらのモデルのサンプル効率を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T20:11:00Z) - Lower Layer Matters: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused [44.37155553647802]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて例外的な性能を示している。
時に、期待された出力と事実的に不正確な、あるいは不一致なコンテンツを生成する。
近年の研究では,幻覚誘発モデルとアマチュアモデルとの対比的復号化について検討している。
LOL(Lower Layer Matters)と呼ばれる新しいコントラストデコーディングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-08-16T14:23:59Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
大規模言語モデル (LLM) は、様々な領域や広範囲のアプリケーションにまたがる、長い形式の質問応答タスクにおいて幻覚を示す。
現在の幻覚検出と緩和データセットはドメインやサイズによって制限されている。
本稿では,幻覚アノテーションデータセットを同時に,段階的にスケールアップする反復的自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T17:56:38Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
言語的先行性への過度な依存は幻覚に繋がる重要な要因として認識されている。
本稿では,新しい画像バイアスデコーディング手法を導入することにより,この問題を軽減することを提案する。
提案手法は,従来のLVLMと画像バイアスLVLMの予測を対比することにより,次の確率分布を導出する。
論文 参考訳(メタデータ) (2024-02-28T16:57:22Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Don't Say What You Don't Know: Improving the Consistency of Abstractive
Summarization by Constraining Beam Search [54.286450484332505]
本研究は,幻覚とトレーニングデータの関連性を解析し,学習対象の要約を学習した結果,モデルが幻覚を呈する証拠を見出した。
本稿では,ビーム探索を制約して幻覚を回避し,変換器をベースとした抽象要約器の整合性を向上させる新しい復号法であるPINOCCHIOを提案する。
論文 参考訳(メタデータ) (2022-03-16T07:13:52Z) - Detecting Hallucinated Content in Conditional Neural Sequence Generation [165.68948078624499]
出力シーケンスの各トークンが(入力に含まれていない)幻覚化されているかどうかを予測するタスクを提案する。
また、合成データに微調整された事前学習言語モデルを用いて幻覚を検出する方法についても紹介する。
論文 参考訳(メタデータ) (2020-11-05T00:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。