論文の概要: A Hyperspectral and RGB Dataset for Building Facade Segmentation
- arxiv url: http://arxiv.org/abs/2212.02749v1
- Date: Tue, 6 Dec 2022 04:38:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 16:51:43.616516
- Title: A Hyperspectral and RGB Dataset for Building Facade Segmentation
- Title(参考訳): ファサードセグメンテーション構築のためのハイパースペクトルとRGBデータセット
- Authors: Nariman Habili, Ernest Kwan, Weihao Li, Christfried Webers, Jeremy
Oorloff, Mohammad Ali Armin, Lars Petersson
- Abstract要約: 本研究は,現場の異なる建築材料を分類することを目的とした,光産業環境におけるファサード構築のためのHSIデータセットを紹介する。
このデータセットはLight Industrial Building HSI (LIB-HSI) データセットと呼ばれる。
- 参考スコア(独自算出の注目度): 17.863667095026447
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hyperspectral Imaging (HSI) provides detailed spectral information and has
been utilised in many real-world applications. This work introduces an HSI
dataset of building facades in a light industry environment with the aim of
classifying different building materials in a scene. The dataset is called the
Light Industrial Building HSI (LIB-HSI) dataset. This dataset consists of nine
categories and 44 classes. In this study, we investigated deep learning based
semantic segmentation algorithms on RGB and hyperspectral images to classify
various building materials, such as timber, brick and concrete.
- Abstract(参考訳): ハイパースペクトルイメージング(HSI)は詳細なスペクトル情報を提供し、多くの現実世界のアプリケーションで利用されてきた。
本研究は,現場の異なる建築材料を分類することを目的とした,光産業環境におけるファサード構築のためのHSIデータセットを紹介する。
このデータセットはLight Industrial Building HSI(LIB-HSI)データセットと呼ばれる。
このデータセットは9つのカテゴリと44のクラスから構成される。
本研究では,rgbおよびハイパースペクトル画像を用いた深層学習に基づく意味セグメンテーションアルゴリズムを調査し,木材,れんが,コンクリートなどの各種建築材料を分類した。
関連論文リスト
- Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
ハイパースペクトル画像分割のための多種多様なディープラーニングアーキテクチャの性能を評価する。
その結果,空間情報をスペクトルデータと組み合わせることで,セグメンテーション結果が改善された。
我々は、Tecnalia WEEE Hyperspectralデータセットのクリーニングと公開によって、この分野に貢献する。
論文 参考訳(メタデータ) (2024-07-05T13:45:11Z) - GBSS:a global building semantic segmentation dataset for large-scale
remote sensing building extraction [10.39943244036649]
我々は6大陸から116.9kのサンプル(約742kの建物)からなるグローバル・ビルディング・セマンティック・データセット(データセットを公開予定)を構築した。
サイズとスタイルの点で、ビルドサンプルには大きなバリエーションがあるため、セマンティックセグメンテーションモデルの構築の一般化と堅牢性を評価する上で、データセットはより難しいベンチマークになり得る。
論文 参考訳(メタデータ) (2024-01-02T12:13:35Z) - Segment Any Events via Weighted Adaptation of Pivotal Tokens [85.39087004253163]
本稿では,Segment Anything Models (SAM) をイベントデータと統合する上で,難易度の高い課題に焦点を当てる。
本稿では,RGB画像とイベントデータからのトークン埋め込みのアライメントを最適化するマルチスケールな特徴蒸留手法を提案する。
論文 参考訳(メタデータ) (2023-12-24T12:47:08Z) - Segment Any Building [8.12405696290333]
この原稿は、画像にセグメンテーションを構築するための最先端表現学習パラダイムを用いて、多様なデータセットをタンデムで活用する能力をアクセント化する。
我々の前衛合同訓練体制は, 都市インフラ整備, 防災戦略, 生態モニタリングなど, 重要な分野に重大な影響を及ぼし, アプローチのメリットを浮き彫りにしている。
この研究の結果は、学術的な追求の基盤を固めることと、セグメンテーション構築の分野における革新的な応用による地平線を埋めることの両方に繋がる。
論文 参考訳(メタデータ) (2023-10-02T12:49:20Z) - SAD: Segment Any RGBD [54.24917975958583]
Segment Anything Model (SAM)は、2D RGB画像の任意の部分のセグメント化の有効性を実証している。
本稿では,画像から直接幾何学情報を抽出するSegment Any RGBD (SAD) モデルを提案する。
論文 参考訳(メタデータ) (2023-05-23T16:26:56Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
本稿では,ハズフリー画像とその場でのハズ密度測定を併用した,最初の実画像ベンチマークデータセットを提案する。
このデータセットはコントロールされた環境で生成され、プロの煙発生装置がシーン全体を覆っている。
このデータセットのサブセットは、CVPR UG2 2022 チャレンジの Haze Track における Object Detection に使用されている。
論文 参考訳(メタデータ) (2022-06-13T19:14:06Z) - SODA: Site Object Detection dAtaset for Deep Learning in Construction [3.5061054566652]
本稿では,Site Object Detection dAtaset (SODA) と呼ばれる,建設現場で収集・注釈付の大規模画像データセットを開発する。
異なる現場条件、気象条件、建設段階において複数の建設現場から2万枚以上の画像が収集され、異なる角度と視点をカバーした。
慎重なスクリーニングと処理の後、286,201個のオブジェクトを含む19,846個の画像が得られた。
論文 参考訳(メタデータ) (2022-02-19T09:09:23Z) - A Survey on RGB-D Datasets [69.73803123972297]
本稿では,深度情報を含む画像データセットをレビューし,分類した。
アクセス可能なデータを含む203のデータセットを収集し、それらをシーン/オブジェクト、ボディ、医療の3つのカテゴリに分類しました。
論文 参考訳(メタデータ) (2022-01-15T05:35:19Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Holistic Multi-View Building Analysis in the Wild with Projection
Pooling [18.93067906200084]
細粒度構造属性に関連する6つの異なる分類課題に対処する。
このようなリモート・ビルディング・アナリティクスの問題に対処することは、都市景観の大規模データセットの増大により、最近になって可能になった。
9674棟の49426画像(トップビューとストリートビュー)からなる新しいベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2020-08-23T13:49:22Z) - OpenRooms: An End-to-End Open Framework for Photorealistic Indoor Scene
Datasets [103.54691385842314]
本研究では,屋内シーンの大規模フォトリアリスティックデータセットを作成するための新しいフレームワークを提案する。
私たちの目標は、データセット作成プロセスを広く利用できるようにすることです。
これにより、逆レンダリング、シーン理解、ロボット工学における重要な応用が可能になる。
論文 参考訳(メタデータ) (2020-07-25T06:48:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。