論文の概要: Denoising diffusion probabilistic models for probabilistic energy
forecasting
- arxiv url: http://arxiv.org/abs/2212.02977v2
- Date: Wed, 7 Dec 2022 13:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 15:14:11.023315
- Title: Denoising diffusion probabilistic models for probabilistic energy
forecasting
- Title(参考訳): 確率的エネルギー予測のための拡散確率モデル
- Authors: Esteban Hernandez Capel, Jonathan Dumas
- Abstract要約: 本稿では,拡散確率モデルと呼ばれる有望なディープラーニング生成手法を提案する。
我々は,2014年のGlobal Energy Forecasting Competitionのオープンデータを用いたエネルギー予測モデルの最初の実装を提案する。
その結果、この手法は他の最先端のディープラーニング生成モデルと競合し、生成的逆数ネットワーク、変分オートエンコーダ、正規化フローなどであることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scenario-based probabilistic forecasts have become a vital tool to equip
decision-makers to address the uncertain nature of renewable energies. To that
end, this paper presents a recent promising deep learning generative approach
called denoising diffusion probabilistic models. It is a class of latent
variable models which have recently demonstrated impressive results in the
computer vision community. However, to the best of our knowledge, there has yet
to be a demonstration that they can generate high-quality samples of load, PV,
or wind power time series, crucial elements to face the new challenges in power
systems applications. Thus, we propose the first implementation of this model
for energy forecasting using the open data of the Global Energy Forecasting
Competition 2014. The results demonstrate this approach is competitive with
other state-of-the-art deep learning generative models, including generative
adversarial networks, variational autoencoders, and normalizing flows.
- Abstract(参考訳): シナリオに基づく確率的予測は、再生可能エネルギーの不安定な性質に対処する意思決定者のための重要なツールとなっている。
そこで本稿では,近年のディープラーニング生成手法であるdenoising diffusion probabilistic modelsを提案する。
これは、最近コンピュータビジョンコミュニティで印象的な結果を実証した潜伏変数モデルのクラスである。
しかしながら、私たちの知る限りでは、電力システムアプリケーションにおける新しい課題に直面する上で重要な要素である、負荷、PV、風力の時系列の高品質なサンプルを生成できることの実証はまだありません。
そこで本研究では,グローバルエネルギー予測コンペティション2014のオープンデータを用いたエネルギー予測モデルの最初の実装を提案する。
このアプローチは、生成的逆ネットワーク、変分オートエンコーダ、正規化フローなど、最先端のディープラーニング生成モデルと競合することが示されている。
関連論文リスト
- Recurrent Interpolants for Probabilistic Time Series Prediction [10.422645245061899]
リカレントニューラルネットワークやトランスフォーマーのような逐次モデルは、確率的時系列予測の標準となっている。
近年の研究では、拡散モデルやフローベースモデルを用いて、時系列計算や予測に拡張した生成的アプローチについて検討している。
本研究は、補間剤と制御機能付き条件生成に基づく、リカレントニューラルネットワークの効率と拡散モデルの確率的モデリングを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-18T03:52:48Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Conditional Diffusion Probabilistic Model for Speech Enhancement [101.4893074984667]
本稿では,観測された雑音の音声信号の特徴を拡散・逆過程に組み込む新しい音声強調アルゴリズムを提案する。
本実験では, 代表的な生成モデルと比較して, 提案手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-10T18:58:01Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
本稿では,電力負荷予測のための新しいアンサンブルディープランダム関数リンク(edRVFL)を提案する。
隠されたレイヤは、深い表現学習を強制するために積み上げられます。
モデルは各層の出力をアンサンブルすることで予測を生成する。
論文 参考訳(メタデータ) (2021-07-30T01:20:48Z) - Deep generative modeling for probabilistic forecasting in power systems [34.70329820717658]
本研究では,近年のディープラーニング技術である正規化フローを用いて,正確な確率予測を行う。
我々の方法論は他の最先端のディープラーニング生成モデルと競合していることを示す。
論文 参考訳(メタデータ) (2021-06-17T10:41:57Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Probabilistic Load Forecasting Based on Adaptive Online Learning [7.373617024876726]
本稿では,隠れマルコフモデルの適応型オンライン学習に基づく確率的負荷予測手法を提案する。
本稿では,理論的保証のある学習予測手法を提案し,その性能を複数のシナリオで実験的に評価する。
その結果,提案手法は様々なシナリオにおいて既存手法の性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-11-30T12:02:26Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
本稿では,このモデルから生成された予測が正確であるような拡散モデルの学習の問題に対処する。
本稿では,スケーラブルな動的メッセージパッシング手法に基づく計算効率のよいアルゴリズムを提案する。
学習モデルからの抽出可能な推論は,元のモデルと比較して限界確率の予測精度がよいことを示す。
論文 参考訳(メタデータ) (2020-07-13T17:58:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。