Temporal disorder in spatiotemporal order
- URL: http://arxiv.org/abs/2212.03135v2
- Date: Sat, 24 Jun 2023 13:10:59 GMT
- Title: Temporal disorder in spatiotemporal order
- Authors: Hongzheng Zhao, Johannes Knolle, Roderich Moessner
- Abstract summary: We find that a random order cannot be achieved even by periodic driving.
We extend the discussion of time translation symmetry breaking to randomly driven systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-dependent driving holds the promise of realizing dynamical phenomenon
absent in static systems. Here, we introduce a correlated random driving
protocol to realize a spatiotemporal order that cannot be achieved even by
periodic driving, thereby extending the discussion of time translation symmetry
breaking to randomly driven systems. We find a combination of temporally
disordered micro-motion with prethermal stroboscopic spatiotemporal long-range
order. This spatiotemporal order remains robust against generic perturbations,
with an algebraically long prethermal lifetime where the scaling exponent
strongly depends on the symmetry of the perturbation, which we account for
analytically.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Slow relaxation of quasi-periodically driven integrable quantum many-body systems [14.37149160708975]
We study the emergence and stability of a prethermal phase in an integrable many-body system subjected to a Fibonacci drive.
In spite of the breakdown of an effective Hamiltonian in the perturbative analysis, we still observe slow logarithmic heating time-scales, unlike purely random drives.
arXiv Detail & Related papers (2024-04-10T00:48:00Z) - Emergent Continuous Time Crystal in Dissipative Quantum Spin System without Driving [1.641189223782504]
Time crystal, a nonequilibrium phenomenon extending spontaneous symmetry breaking into the temporal dimension, holds fundamental significance in quantum many-body physics.
We numerically identify the emergence of novel nonstationary oscillatory states by analyzing the spin dynamics.
This study provides many insights into the intricate interplay between the dissipation-induced spin downwards and anisotropic-interaction-induced spin precession or spin fluctuation.
arXiv Detail & Related papers (2024-03-13T12:40:32Z) - Long-lived topological time-crystalline order on a quantum processor [16.781279220543517]
Topologically ordered phases of matter elude Landau's symmetry-breaking theory.
We report the observation of signatures of such a phenomenon with programmable superconducting qubits arranged on a square lattice.
We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy.
arXiv Detail & Related papers (2024-01-09T03:20:15Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Temporal fluctuations of correlators in integrable and chaotic quantum
systems [0.0]
We provide bounds on temporal fluctuations around the infinite-time average of out-of-time-ordered and time-ordered correlators of many-body quantum systems without energy gap degeneracies.
For physical initial states, our bounds predict the exponential decay of the temporal fluctuations as a function of the system size.
arXiv Detail & Related papers (2023-07-17T12:35:38Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Bistability and time crystals in long-ranged directed percolation [0.0]
We propose a simple cellular automaton with power-law interactions that gives rise to a bistable phase of long-ranged directed percolation.
Our work thus provides a firm example of a classical discrete time crystal phase of matter.
arXiv Detail & Related papers (2020-04-27T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.