論文の概要: P{\O}DA: Prompt-driven Zero-shot Domain Adaptation
- arxiv url: http://arxiv.org/abs/2212.03241v3
- Date: Sat, 19 Aug 2023 10:31:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 02:17:55.862228
- Title: P{\O}DA: Prompt-driven Zero-shot Domain Adaptation
- Title(参考訳): P{\O}DA: プロンプト駆動ゼロショットドメイン適応
- Authors: Mohammad Fahes, Tuan-Hung Vu, Andrei Bursuc, Patrick P\'erez, Raoul de
Charette
- Abstract要約: 我々は,対象領域の自然言語,すなわちプロンプトの一般的な記述のみを用いて,ソースドメイン上で訓練されたモデルを適用する。
本稿では,これらのプロンプト駆動による拡張が,セマンティックセグメンテーションのためのゼロショットドメイン適応の実行に有効であることを示す。
- 参考スコア(独自算出の注目度): 27.524962843495366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation has been vastly investigated in computer vision but still
requires access to target images at train time, which might be intractable in
some uncommon conditions. In this paper, we propose the task of `Prompt-driven
Zero-shot Domain Adaptation', where we adapt a model trained on a source domain
using only a general description in natural language of the target domain,
i.e., a prompt. First, we leverage a pretrained contrastive vision-language
model (CLIP) to optimize affine transformations of source features, steering
them towards the target text embedding while preserving their content and
semantics. To achieve this, we propose Prompt-driven Instance Normalization
(PIN). Second, we show that these prompt-driven augmentations can be used to
perform zero-shot domain adaptation for semantic segmentation. Experiments
demonstrate that our method significantly outperforms CLIP-based style transfer
baselines on several datasets for the downstream task at hand, even surpassing
one-shot unsupervised domain adaptation. A similar boost is observed on object
detection and image classification. The code is available at
https://github.com/astra-vision/PODA .
- Abstract(参考訳): ドメイン適応はコンピュータビジョンにおいて大いに研究されてきたが、それでも列車の時間にターゲット画像にアクセスする必要がある。
本稿では,対象ドメインの自然言語における一般的な記述,すなわちプロンプトを用いて,ソースドメインでトレーニングされたモデルを適応させる,'prompt-driven zero-shot domain adaptation'というタスクを提案する。
まず、訓練済みのコントラッシブ・ビジョン言語モデル(CLIP)を用いて、ソース機能のアフィン変換を最適化し、コンテンツを保存しながら、ターゲットテキストの埋め込みに向けて操る。
そこで我々は,PIN(Prompt-driven Instance Normalization)を提案する。
第2に,これらのプロンプト駆動拡張により,意味セグメンテーションのためのゼロショット領域適応を行うことができることを示す。
実験により,本手法は,下流タスクの複数のデータセット上で,一発の教師なしドメイン適応を超越して,CLIPベースのスタイル転送ベースラインを著しく上回ることを示した。
オブジェクト検出と画像分類でも同様な増加が観察される。
コードはhttps://github.com/astra-vision/podaで入手できる。
関連論文リスト
- Phrase Grounding-based Style Transfer for Single-Domain Generalized
Object Detection [109.58348694132091]
単一ドメインの一般化オブジェクト検出は、複数の未確認対象ドメインに対するモデルの一般化性を高めることを目的としている。
これは、ターゲットのドメインデータをトレーニングに組み込むことなく、ドメインシフトに対処するモデルを必要とするため、実用的だが難しいタスクである。
そこで我々は,課題に対する新しい文節接頭辞に基づくスタイル伝達手法を提案する。
論文 参考訳(メタデータ) (2024-02-02T10:48:43Z) - Domain-Controlled Prompt Learning [49.45309818782329]
既存の素早い学習方法はドメイン認識やドメイン転送機構を欠いていることが多い。
特定のドメインに対するtextbfDomain-Controlled Prompt Learningを提案する。
本手法は,特定の領域画像認識データセットにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-30T02:59:49Z) - SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for
Classification in Low-Resource Domains [14.096170976149521]
SwitchPromptは、汎用ドメインからさまざまな低リソースドメインへのデータセットでトレーニングされた言語モデルを適応するための、新しくて軽量なプロンプト手法である。
筆者らは,SwitchPromptを用いた場合の一般領域事前学習言語モデルの有効性を3つのテキスト分類ベンチマークで検証した。
彼らはしばしば、ベースライン・オブ・ザ・アーツ・プロンプト法で訓練されたドメイン固有の手法を最大10.7%の精度で上回っている。
論文 参考訳(メタデータ) (2023-02-14T07:14:08Z) - Learning Domain Invariant Prompt for Vision-Language Models [31.581652862478965]
本稿では,メタプロンプト(MetaPrompt)と呼ばれる未確認領域に一般化可能な,固有領域不変プロンプトを直接生成する新しいプロンプト学習パラダイムを提案する。
我々の手法は既存の手法より一貫して大幅に優れています。
論文 参考訳(メタデータ) (2022-12-08T11:23:24Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
画像部品の相対的な位置を予測し,セマンティックセグメンテーションのためのネットワークを事前訓練する。
参照パッチのサブセットを問合せのサブセットにマスキングすることで,タスクの難しさを制御します。
実験により,この位置認識事前学習が,いくつかの難解なセマンティックセグメンテーションベンチマークに競合する表現をもたらすことが示された。
論文 参考訳(メタデータ) (2022-12-05T16:24:29Z) - Prototypical Contrast Adaptation for Domain Adaptive Semantic
Segmentation [52.63046674453461]
プロトタイプ・コントラスト適応(Prototypeal Contrast Adaptation, ProCA)は、教師なしドメイン適応セマンティックセマンティックセグメンテーションのための対照的な学習法である。
ProCAはクラス間の情報をクラスワイドプロトタイプに組み込み、適応のためにクラス中心の分散アライメントを採用する。
論文 参考訳(メタデータ) (2022-07-14T04:54:26Z) - Domain Adaptation via Prompt Learning [39.97105851723885]
Unsupervised Domain Adaption (UDA) は、十分にアノテーションされたソースドメインから学習したモデルをターゲットドメインに適応させることを目的としている。
我々は,Prompt Learning (DAPL) によるドメイン適応という,UDAのための新しいプロンプト学習パラダイムを導入する。
論文 参考訳(メタデータ) (2022-02-14T13:25:46Z) - Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency [93.89773386634717]
ビジュアルドメイン適応は、異なるソースドメインで利用可能なラベルを使用して、ターゲットのビジュアルドメインからイメージを分類する学習を含む。
いくつかの目標ラベルが存在する場合、(回転予測による)自己スーパービジョンや整合正則化といった単純な手法が、適切な目標分類器を学習するための対角アライメントなしで有効であることを示す。
我々の事前学習と一貫性(PAC)アプローチは、この半教師付きドメイン適応タスクにおいて、複数のデータセットにまたがる複数の対向的なドメインアライメント手法を超越して、技術精度を達成することができる。
論文 参考訳(メタデータ) (2021-01-29T18:40:17Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
本稿では,ソースとターゲットの画素ペア間の画素レベルサイクルの関連性を構築することを提案する。
我々の手法は1段階のエンドツーエンドで訓練でき、追加のパラメータは導入しない。
論文 参考訳(メタデータ) (2020-10-31T00:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。