論文の概要: Framework-agnostic Semantically-aware Global Reasoning for Segmentation
- arxiv url: http://arxiv.org/abs/2212.03338v2
- Date: Wed, 17 Apr 2024 23:02:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 21:00:27.868809
- Title: Framework-agnostic Semantically-aware Global Reasoning for Segmentation
- Title(参考訳): セグメンテーションのためのフレームワークに依存しない意味論的グローバル推論
- Authors: Mir Rayat Imtiaz Hossain, Leonid Sigal, James J. Little,
- Abstract要約: 本稿では,画像特徴を潜在表現に投影し,それら間の関係を推論するコンポーネントを提案する。
我々の設計では、活性化領域が空間的に不整合であることを保証することにより、潜在領域が意味概念を表現することを奨励している。
潜在トークンはセマンティックに解釈可能で多様性があり、下流タスクに転送可能な豊富な機能セットを提供します。
- 参考スコア(独自算出の注目度): 29.69187816377079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in pixel-level tasks (e.g. segmentation) illustrate the benefit of of long-range interactions between aggregated region-based representations that can enhance local features. However, such aggregated representations, often in the form of attention, fail to model the underlying semantics of the scene (e.g. individual objects and, by extension, their interactions). In this work, we address the issue by proposing a component that learns to project image features into latent representations and reason between them using a transformer encoder to generate contextualized and scene-consistent representations which are fused with original image features. Our design encourages the latent regions to represent semantic concepts by ensuring that the activated regions are spatially disjoint and the union of such regions corresponds to a connected object segment. The proposed semantic global reasoning (SGR) component is end-to-end trainable and can be easily added to a wide variety of backbones (CNN or transformer-based) and segmentation heads (per-pixel or mask classification) to consistently improve the segmentation results on different datasets. In addition, our latent tokens are semantically interpretable and diverse and provide a rich set of features that can be transferred to downstream tasks like object detection and segmentation, with improved performance. Furthermore, we also proposed metrics to quantify the semantics of latent tokens at both class \& instance level.
- Abstract(参考訳): 近年のピクセルレベルタスク(egセグメンテーション)の進歩は、局所的特徴を高めることができる集約された領域ベース表現間の長距離相互作用の利点を示している。
しかしながら、このような集約された表現は、しばしば注意の形で、シーンの根底にある意味論(例えば、個々のオブジェクトと、その相互作用によって)をモデル化することができない。
本研究では,画像特徴を潜在表現に投影することを学ぶコンポーネントを提案するとともに,トランスフォーマーエンコーダを用いて,元の画像特徴と融合したコンテキスト化およびシーン一貫性のある表現を生成することによって,その課題に対処する。
我々の設計では、活性化領域が空間的に不整合であり、そのような領域の結合が連結対象セグメントに対応することを保証することにより、潜在領域が意味概念を表現することを奨励している。
提案したセマンティックグローバル推論(SGR)コンポーネントは、エンドツーエンドのトレーニングが可能で、さまざまなバックボーン(CNNまたはトランスフォーマーベース)とセグメンテーションヘッド(ピクセル単位またはマスク分類)に簡単に追加でき、異なるデータセットのセグメンテーション結果を一貫して改善することができる。
さらに、潜在トークンはセマンティックに解釈可能で多様性があり、オブジェクト検出やセグメンテーションといった下流タスクに転送可能な豊富な機能セットを提供し、パフォーマンスを改善しています。
さらに,クラスとインスタンスの両レベルで潜在トークンの意味を定量化する指標も提案した。
関連論文リスト
- AgMTR: Agent Mining Transformer for Few-shot Segmentation in Remote Sensing [12.91626624625134]
Few-shot (FSS) は、関心のあるオブジェクトを少数のラベル付きサンプル(つまりサポートイメージ)でクエリイメージに分割することを目的としている。
以前のスキームでは、サポートクエリのピクセルペア間の類似性を利用して、ピクセルレベルのセマンティックな相関を構築していた。
極端にクラス内変異や乱雑な背景を持つリモートセンシングシナリオでは、そのようなピクセルレベルの相関が大きなミスマッチを引き起こす可能性がある。
本稿では,エージェントレベルの意味的相関を構築するために,一組の局所認識エージェントを適応的にマイニングする新しいエージェントマイニングトランス (AgMTR) を提案する。
論文 参考訳(メタデータ) (2024-09-26T01:12:01Z) - EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation [5.476136494434766]
意味的類似性行列から派生した固有ベイズを通して意味的および構造的手がかりを提供する手法であるEiCueを紹介する。
オブジェクトレベルの表現を画像内および画像間の整合性で学習する。
COCO-Stuff、Cityscapes、Potsdam-3データセットの実験では、最先端のUSSの結果が示されている。
論文 参考訳(メタデータ) (2024-03-03T11:24:16Z) - Part-guided Relational Transformers for Fine-grained Visual Recognition [59.20531172172135]
識別的特徴を学習し,特徴変換モジュールとの相関関係を探索するフレームワークを提案する。
提案手法は,3-of-the-levelオブジェクト認識において,部分ブランチの追加に頼らず,最先端の性能に達する。
論文 参考訳(メタデータ) (2022-12-28T03:45:56Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
本研究では,様々なオープンワールドカテゴリのセマンティックオブジェクトを高密度アノテーションを使わずにセマンティックオブジェクトのセマンティックオブジェクトのセマンティック化を学習するための,新しいオープンワールドセマンティックセマンティックセマンティックセマンティクスパイプラインを提案する。
提案手法は任意のカテゴリのオブジェクトを直接分割し、3つのベンチマークデータセット上でデータラベリングを必要とするゼロショットセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2022-07-18T09:20:04Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
ポイントクラウドセマンティックセグメンテーションのためのSemAffiNetを提案する。
我々はScanNetV2とNYUv2データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-05-26T17:00:23Z) - A Unified Architecture of Semantic Segmentation and Hierarchical
Generative Adversarial Networks for Expression Manipulation [52.911307452212256]
セマンティックセグメンテーションと階層的GANの統一アーキテクチャを開発する。
我々のフレームワークのユニークな利点は、将来的なセマンティックセグメンテーションネットワーク条件を生成モデルに渡すことである。
我々は,AffectNetとRaFDの2つの難解な表情翻訳ベンチマークとセマンティックセグメンテーションベンチマークであるCelebAMask-HQについて評価を行った。
論文 参考訳(メタデータ) (2021-12-08T22:06:31Z) - Robust 3D Scene Segmentation through Hierarchical and Learnable
Part-Fusion [9.275156524109438]
3Dセマンティックセグメンテーションは、自律運転、ロボット工学、AR/VRといったいくつかのシーン理解アプリケーションのための基本的なビルディングブロックである。
従来の手法では、階層的で反復的な手法を用いて意味や事例情報を融合するが、文脈融合における学習性は欠如している。
本稿では,セグメンテーション・フュージョン(Seegment-Fusion)について述べる。
論文 参考訳(メタデータ) (2021-11-16T13:14:47Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
本稿では,意味的セグメンテーションにおける教師なしドメイン適応(UDA)の問題に対処する。
ソースドメインとターゲットドメインが不変なセマンティック構造を持つという事実に触発され、ドメイン間におけるそのような不変性を活用することを提案する。
親和性空間適応戦略として,親和性空間の洗浄と親和性空間アライメントという2つの方法を開発した。
論文 参考訳(メタデータ) (2020-09-26T10:28:11Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
既存のセグメンテーションアプローチは、グローバルコンテキストをモデル化することでオブジェクトの内部の一貫性を改善すること、あるいはマルチスケールの特徴融合によって境界に沿ったオブジェクトの詳細を洗練することを目的としている。
本稿では,セマンティックセグメンテーションのための新しいパラダイムを提案する。
我々の洞察は、セマンティックセグメンテーションの魅力ある性能には、画像の高頻度と低頻度に対応するオブジェクトのテキストボディとテキストエッジを具体的にモデル化する必要があるということである。
さまざまなベースラインやバックボーンネットワークを備えた提案したフレームワークが,オブジェクト内部の一貫性とオブジェクト境界を向上させることを示す。
論文 参考訳(メタデータ) (2020-07-20T12:11:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。