論文の概要: Deformable Attentive Visual Enhancement for Referring Segmentation Using Vision-Language Model
- arxiv url: http://arxiv.org/abs/2505.19242v1
- Date: Sun, 25 May 2025 17:42:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.000412
- Title: Deformable Attentive Visual Enhancement for Referring Segmentation Using Vision-Language Model
- Title(参考訳): 視覚言語モデルを用いた参照セグメンテーションのための変形性注意視覚強調
- Authors: Alaa Dalaq, Muzammil Behzad,
- Abstract要約: 本稿では,セグメンテーションの精度とモーダル間のアライメントを向上させるために,アーキテクチャの改善を取り入れた視覚言語モデルを提案する。
SegVLMは多様なデータセットをまたいだ強力な一般化と表現シナリオの参照を示す。
- 参考スコア(独自算出の注目度): 0.8747606955991707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image segmentation is a fundamental task in computer vision, aimed at partitioning an image into semantically meaningful regions. Referring image segmentation extends this task by using natural language expressions to localize specific objects, requiring effective integration of visual and linguistic information. In this work, we propose SegVLM, a vision-language model that incorporates architectural improvements to enhance segmentation accuracy and cross-modal alignment. The model integrates squeeze-and-excitation (SE) blocks for dynamic feature recalibration, deformable convolutions for geometric adaptability, and residual connections for deep feature learning. We also introduce a novel referring-aware fusion (RAF) loss that balances region-level alignment, boundary precision, and class imbalance. Extensive experiments and ablation studies demonstrate that each component contributes to consistent performance improvements. SegVLM also shows strong generalization across diverse datasets and referring expression scenarios.
- Abstract(参考訳): イメージセグメンテーションは、イメージを意味のある領域に分割することを目的とした、コンピュータビジョンの基本的なタスクである。
イメージセグメンテーションの参照は、自然言語表現を用いて特定のオブジェクトをローカライズし、視覚情報と言語情報の効果的な統合を必要とすることにより、このタスクを拡張します。
本研究では,セグメンテーションの精度向上と相互モーダルアライメントを向上させるために,アーキテクチャの改善を取り入れた視覚言語モデルであるSegVLMを提案する。
このモデルは、動的特徴再構成のための圧縮励起(SE)ブロック、幾何学的適応性のための変形可能な畳み込み、深い特徴学習のための残留接続を統合する。
また、領域レベルのアライメント、境界精度、クラス不均衡をバランスさせる新しい参照認識融合(RAF)ロスを導入する。
大規模な実験とアブレーション研究は、各コンポーネントが一貫したパフォーマンス改善に寄与することを示した。
SegVLMはまた、多様なデータセットをまたいだ強力な一般化と表現シナリオの参照を示している。
関連論文リスト
- Scale-wise Bidirectional Alignment Network for Referring Remote Sensing Image Segmentation [12.893224628061516]
リモートセンシング画像セグメンテーション(RRSIS)の目的は、自然言語表現を用いて、空中画像内の特定のピクセルレベル領域を抽出することである。
本稿では,これらの課題に対処するため,SBANet(Scale-wise Bidirectional Alignment Network)と呼ばれる革新的なフレームワークを提案する。
提案手法は,RRSIS-DとRefSegRSのデータセットにおける従来の最先端手法と比較して,優れた性能を実現する。
論文 参考訳(メタデータ) (2025-01-01T14:24:04Z) - SJTU:Spatial judgments in multimodal models towards unified segmentation through coordinate detection [4.930667479611019]
本稿では,マルチモーダルモデルにおける空間的判断 -コーディネート検出による統一を目指して-
マルチモーダル空間における空間推論を通した視覚言語モデルとのセグメンテーション手法の統合手法を提案する。
ベンチマークデータセット間で優れたパフォーマンスを示し、COCO 2017では0.5958、Pascal VOCでは0.6758、IoUスコアを達成しました。
論文 参考訳(メタデータ) (2024-12-03T16:53:58Z) - Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [50.433911327489554]
リモートセンシング画像セグメンテーション(RRSIS)の目標は、参照式によって識別された対象オブジェクトの画素レベルマスクを生成することである。
上記の課題に対処するため、クロスモーダル双方向相互作用モデル(CroBIM)と呼ばれる新しいRRSISフレームワークが提案されている。
RRSISの研究をさらに推し進めるために、52,472個の画像言語ラベル三重項からなる新しい大規模ベンチマークデータセットRISBenchを構築した。
論文 参考訳(メタデータ) (2024-10-11T08:28:04Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
単一ソースドメインの一般化は、より信頼性が高く一貫性のあるイメージセグメンテーションを現実の臨床環境にわたって約束する。
本稿では,テキストエンコーダ機能によって案内されるコントラスト学習機構を組み込むことで,テキスト情報を明確に活用する手法を提案する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
論文 参考訳(メタデータ) (2024-04-01T17:48:15Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - Linguistic Query-Guided Mask Generation for Referring Image Segmentation [10.130530501400079]
画像セグメンテーションの参照は、与えられた言語表現に従って、興味のある画像領域をセグメンテーションすることを目的としている。
本稿では,言語クエリ誘導マスク生成を行うために,トランスフォーマー上に構築されたエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-16T13:38:22Z) - GINet: Graph Interaction Network for Scene Parsing [58.394591509215005]
画像領域に対する文脈推論を促進するために,グラフインタラクションユニット(GIユニット)とセマンティックコンテキストロス(SC-loss)を提案する。
提案されたGINetは、Pascal-ContextやCOCO Stuffなど、一般的なベンチマークにおける最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2020-09-14T02:52:45Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。