論文の概要: A Temporal Graph Neural Network for Cyber Attack Detection and
Localization in Smart Grids
- arxiv url: http://arxiv.org/abs/2212.03390v1
- Date: Wed, 7 Dec 2022 00:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 17:28:14.197000
- Title: A Temporal Graph Neural Network for Cyber Attack Detection and
Localization in Smart Grids
- Title(参考訳): スマートグリッドにおけるサイバーアタック検出とローカライズのための時間グラフニューラルネットワーク
- Authors: Seyed Hamed Haghshenas, Md Abul Hasnat, Mia Naeini
- Abstract要約: 本稿では,スマートグリッドのシステム状態に対する偽データインジェクションとランプ攻撃の検出とローカライズを行うための時間グラフニューラルネットワーク(TGNN)フレームワークを提案する。
攻撃の強度と位置に対するモデルの感度とモデルの検出遅延と検出精度を評価した。
- 参考スコア(独自算出の注目度): 0.3093890460224435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a Temporal Graph Neural Network (TGNN) framework for
detection and localization of false data injection and ramp attacks on the
system state in smart grids. Capturing the topological information of the
system through the GNN framework along with the state measurements can improve
the performance of the detection mechanism. The problem is formulated as a
classification problem through a GNN with message passing mechanism to identify
abnormal measurements. The residual block used in the aggregation process of
message passing and the gated recurrent unit can lead to improved computational
time and performance. The performance of the proposed model has been evaluated
through extensive simulations of power system states and attack scenarios
showing promising performance. The sensitivity of the model to intensity and
location of the attacks and model's detection delay versus detection accuracy
have also been evaluated.
- Abstract(参考訳): 本稿では,スマートグリッドのシステム状態に対する偽データインジェクションとランプ攻撃の検出とローカライズを行うための時間グラフニューラルネットワーク(TGNN)フレームワークを提案する。
GNNフレームワークによるシステムのトポロジ情報と状態測定を同時に取得することで,検出機構の性能を向上させることができる。
この問題は、異常測定を識別するメッセージパッシング機構を備えたGNNを介して分類問題として定式化される。
メッセージパッシングの集約プロセスで使用される残差ブロックとゲートリカレントユニットは、計算時間と性能を改善することができる。
提案モデルの性能は,電力系統状態と有望な性能を示す攻撃シナリオの広範なシミュレーションにより評価されている。
また、攻撃の強度と位置に対するモデルの感度と、モデルの検出遅延と検出精度についても評価した。
関連論文リスト
- LogSHIELD: A Graph-based Real-time Anomaly Detection Framework using Frequency Analysis [3.140349394142226]
ホストデータにおけるグラフベースの異常検出モデルであるLogSHIELDを提案する。
平均98%以上のAUCとF1スコアで、ステルスで高度な攻撃を検出できる。
スループットを大幅に向上し、平均検出レイテンシ0.13秒を実現し、検出時間で最先端モデルを上回るパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-10-29T10:52:43Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Anomaly Detection in Power Grids via Context-Agnostic Learning [4.865842426618145]
グリッド上のセンサの固定セットから得られる時系列測定値を考えると、ネットワークトポロジや測定データの異常を識別できるだろうか?
近年のデータ駆動型ML技術は、現在のデータと過去のデータを組み合わせて異常検出を行っている。
本稿では,正規位相と負荷/世代変化の影響を考慮した,文脈認識型異常検出アルゴリズムGridCALを提案する。
論文 参考訳(メタデータ) (2024-04-11T16:37:01Z) - A Heterogeneous Graph-Based Multi-Task Learning for Fault Event Diagnosis in Smart Grid [1.6385815610837167]
断層の検出,位置決定,分類が可能な異種多タスク学習グラフニューラルネットワーク(MTL-GNN)を提案する。
グラフニューラルネットワーク(GNN)を使用することで、分布システムのトポロジ的表現を学習することができる。
本研究は,分散システムにおけるキーノードを識別する新しいGNNに基づく説明可能性手法を提案する。
論文 参考訳(メタデータ) (2023-09-18T16:35:30Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Representation Learning for Content-Sensitive Anomaly Detection in
Industrial Networks [0.0]
本論文では、生のネットワークトラフィックの時空間的側面を教師なしかつプロトコルに依存しない方法で学習する枠組みを提案する。
学習された表現は、その後の異常検出の結果に与える影響を測定するために使用される。
論文 参考訳(メタデータ) (2022-04-20T09:22:41Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。