Towards using Few-Shot Prompt Learning for Automating Model Completion
- URL: http://arxiv.org/abs/2212.03404v1
- Date: Wed, 7 Dec 2022 02:11:26 GMT
- Title: Towards using Few-Shot Prompt Learning for Automating Model Completion
- Authors: Meriem Ben Chaaben and Lola Burgue\~no and Houari Sahraoui
- Abstract summary: We propose a simple yet a novel approach to improve completion in domain modeling activities.
Our approach exploits the power of large language models by using few-shot prompt learning without the need to train or fine-tune those models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a simple yet a novel approach to improve completion in domain
modeling activities. Our approach exploits the power of large language models
by using few-shot prompt learning without the need to train or fine-tune those
models with large datasets that are scarce in this field. We implemented our
approach and tested it on the completion of static and dynamic domain diagrams.
Our initial evaluation shows that such an approach is effective and can be
integrated in different ways during the modeling activities.
Related papers
- On the Utility of Domain Modeling Assistance with Large Language Models [2.874893537471256]
This paper presents a study to evaluate the usefulness of a novel approach utilizing large language models (LLMs) and few-shot prompt learning to assist in domain modeling.
The aim of this approach is to overcome the need for extensive training of AI-based completion models on scarce domain-specific datasets.
arXiv Detail & Related papers (2024-10-16T13:55:34Z) - Robust Latent Representation Tuning for Image-text Classification [9.789498730131607]
We propose a robust latent representation tuning method for large models.
Our approach introduces a modality latent translation module to maximize the correlation between modalities, resulting in a robust representation.
Within this framework, common semantics are refined during training, and robust performance is achieved even in the absence of one modality.
arXiv Detail & Related papers (2024-06-10T06:29:00Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - Few-shot Prompting Towards Controllable Response Generation [49.479958672988566]
We first explored the combination of prompting and reinforcement learning (RL) to steer models' generation without accessing any of the models' parameters.
We apply multi-task learning to make the model learn to generalize to new tasks better.
Experiment results show that our proposed method can successfully control several state-of-the-art (SOTA) dialogue models without accessing their parameters.
arXiv Detail & Related papers (2022-06-08T14:48:06Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
We propose Top-KAST, a method that preserves constant sparsity throughout training.
We show that it performs comparably to or better than previous works when training models on the established ImageNet benchmark.
In addition to our ImageNet results, we also demonstrate our approach in the domain of language modeling.
arXiv Detail & Related papers (2021-06-07T11:13:05Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Planning from Pixels using Inverse Dynamics Models [44.16528631970381]
We propose a novel way to learn latent world models by learning to predict sequences of future actions conditioned on task completion.
We evaluate our method on challenging visual goal completion tasks and show a substantial increase in performance compared to prior model-free approaches.
arXiv Detail & Related papers (2020-12-04T06:07:36Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.