論文の概要: FPGA Implementation of Multi-Layer Machine Learning Equalizer with
On-Chip Training
- arxiv url: http://arxiv.org/abs/2212.03515v1
- Date: Wed, 7 Dec 2022 08:42:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 15:48:32.267975
- Title: FPGA Implementation of Multi-Layer Machine Learning Equalizer with
On-Chip Training
- Title(参考訳): オンチップトレーニングによるマルチ階層機械学習等化器のFPGA実装
- Authors: Keren Liu, Erik B\"orjeson, Christian H\"ager, Per Larsson-Edefors
- Abstract要約: FPGA上で複数の線形および非線形計算層を置換する適応機械学習等化器を実装した。
勾配バックプロパゲーションによるオンチップトレーニングは、時間変化チャネル障害へのリアルタイム適応を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design and implement an adaptive machine learning equalizer that
alternates multiple linear and nonlinear computational layers on an FPGA.
On-chip training via gradient backpropagation is shown to allow for real-time
adaptation to time-varying channel impairments.
- Abstract(参考訳): FPGA上で複数の線形および非線形計算層を置換する適応機械学習等化器の設計と実装を行う。
勾配バックプロパゲーションによるオンチップトレーニングは、時間変化チャネル障害へのリアルタイム適応を可能にする。
関連論文リスト
- Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data
Reshaping for Online Adaptation or Personalization [11.44696439060875]
EF-Trainは、チャネルレベルの並列性に基づく畳み込みカーネルを統一した、効率的なDNNトレーニングアクセラレータである。
リソース制限された低消費電力エッジレベルFPGAのエンドツーエンドトレーニングを実現することができる。
我々の設計ではスループットとエネルギー効率の点で46.99GFLOPSと6.09GFLOPS/Wを実現している。
論文 参考訳(メタデータ) (2022-02-18T18:27:42Z) - A Deep Learning Inference Scheme Based on Pipelined Matrix
Multiplication Acceleration Design and Non-uniform Quantization [9.454905560571085]
本稿では,パイプライン行列乗算法と非一様量子化法に基づく低消費電力多層パーセプトロン(MLP)加速器を提案する。
その結果,本手法は少ない消費電力で優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2021-10-10T17:31:27Z) - Layer Pruning on Demand with Intermediate CTC [50.509073206630994]
我々はコネクショニスト時間分類(CTC)に基づくASRの訓練と刈り取り方法を提案する。
本稿では,Transformer-CTCモデルをオンデマンドで様々な深さでプルーニングできることを示し,GPU上でのリアルタイム係数を0.005から0.002に改善した。
論文 参考訳(メタデータ) (2021-06-17T02:40:18Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - An FPGA Accelerated Method for Training Feed-forward Neural Networks
Using Alternating Direction Method of Multipliers and LSMR [2.8747398859585376]
ニューラルネットワークトレーニングのための新しいFPGAアクセラレーションアルゴリズムの設計、実装、デプロイ、テストに成功した。
本手法は,並列特性が強い乗算器アルゴリズムの交互方向法に基づく。
我々は,Intel FPGA SDK for OpenCLを用いたFPGAアクセラレーションバージョンを開発し,その後,Intel Arria 10 GX FPGA上でプログラムのデプロイに成功した。
論文 参考訳(メタデータ) (2020-09-06T17:33:03Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
我々は、コア機械学習アーキテクチャを予測的符号化に翻訳する戦略を開発する。
私たちのモデルは、挑戦的な機械学習ベンチマークのバックプロップと同等に機能します。
本手法は,ニューラルネットワークに標準機械学習アルゴリズムを直接実装できる可能性を高める。
論文 参考訳(メタデータ) (2020-06-07T15:35:47Z) - An FPGA-Based On-Device Reinforcement Learning Approach using Online
Sequential Learning [2.99321624683618]
低コストFPGAデバイスのための軽量デバイス強化学習手法を提案する。
バックプロパゲーションメソッドに依存しないオンデバイスラーニングアプローチに基づく、最近提案されたニューラルネットワークを活用する。
提案手法は低コストFPGAプラットフォームとしてPYNQ-Z1ボード用に設計されている。
論文 参考訳(メタデータ) (2020-05-10T12:37:26Z) - Multiscale Non-stationary Stochastic Bandits [83.48992319018147]
本稿では,非定常線形帯域問題に対して,Multiscale-LinUCBと呼ばれる新しいマルチスケール変更点検出法を提案する。
実験結果から,提案手法は非定常環境下での他の最先端アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-13T00:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。