MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected
Vehicles
- URL: http://arxiv.org/abs/2212.03519v1
- Date: Wed, 7 Dec 2022 08:53:53 GMT
- Title: MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected
Vehicles
- Authors: Bowen Xie, Yuxuan Sun, Sheng Zhou, Zhisheng Niu, Yang Xu, Jingran
Chen, Deniz G\"und\"uz
- Abstract summary: We consider a base station coordinating nearby ICVs to train a neural network in a collaborative yet distributed manner.
Due to the mobility of vehicles, the connections between the base station and ICVs are short-lived.
We propose an accelerated FL-ICV framework, by optimizing the duration of each training round and the number of local iterations.
- Score: 21.615151912285835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a promising approach to enable the future Internet
of vehicles consisting of intelligent connected vehicles (ICVs) with powerful
sensing, computing and communication capabilities. We consider a base station
(BS) coordinating nearby ICVs to train a neural network in a collaborative yet
distributed manner, in order to limit data traffic and privacy leakage.
However, due to the mobility of vehicles, the connections between the BS and
ICVs are short-lived, which affects the resource utilization of ICVs, and thus,
the convergence speed of the training process. In this paper, we propose an
accelerated FL-ICV framework, by optimizing the duration of each training round
and the number of local iterations, for better convergence performance of FL.
We propose a mobility-aware optimization algorithm called MOB-FL, which aims at
maximizing the resource utilization of ICVs under short-lived wireless
connections, so as to increase the convergence speed. Simulation results based
on the beam selection and the trajectory prediction tasks verify the
effectiveness of the proposed solution.
Related papers
- Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints.
We propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) to optimize AoI across the system.
arXiv Detail & Related papers (2024-07-01T15:37:38Z) - Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing [6.004901615052089]
Vehicular edge intelligence (VEI) is a promising paradigm for enabling future intelligent transportation systems.
Federated learning (FL) is one of the fundamental technologies facilitating collaborative model training locally and aggregation.
We develop an Adaptive Split Federated Learning scheme for Vehicular Edge Computing (ASFV)
arXiv Detail & Related papers (2024-05-29T02:34:38Z) - VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning [2.6322811557798746]
vehicular radio environment map federated learning (VREM-FL) is proposed.
It combines mobility of vehicles with 5G radio environment maps.
VREM-FL can be tuned to trade training time for radio resource usage.
arXiv Detail & Related papers (2023-11-30T17:38:54Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Mobility, Communication and Computation Aware Federated Learning for
Internet of Vehicles [29.476152044104005]
We propose a novel online FL platform that uses on-road vehicles as learning agents.
Thanks to the advanced features of modern vehicles, the on-board sensors can collect data as vehicles travel along their trajectories.
On-board processors can train machine learning models using the collected data.
arXiv Detail & Related papers (2022-05-17T19:14:38Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
A new federated learning (FL) framework is proposed for designing the autonomous controller of connected and autonomous vehicles (CAVs)
A novel dynamic federated proximal (DFP) algorithm is proposed that accounts for the mobility of CAVs, the wireless fading channels, and the unbalanced and nonindependent and identically distributed data across CAVs.
A rigorous convergence analysis is performed for the proposed algorithm to identify how fast the CAVs converge to using the optimal controller.
arXiv Detail & Related papers (2021-02-05T19:57:47Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimal Beam Association for High Mobility mmWave Vehicular Networks:
Lightweight Parallel Reinforcement Learning Approach [34.71313117637721]
We develop an optimal beam association framework for mmWave vehicular networks under high mobility.
We use the semi-Markov decision process to capture the dynamics and uncertainty of the environment.
Our proposed solution can increase the data rate by 47% and reduce the disconnection probability by 29% compared to other solutions.
arXiv Detail & Related papers (2020-05-02T04:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.