Multiple Object Tracking Challenge Technical Report for Team MT_IoT
- URL: http://arxiv.org/abs/2212.03586v1
- Date: Wed, 7 Dec 2022 12:00:51 GMT
- Title: Multiple Object Tracking Challenge Technical Report for Team MT_IoT
- Authors: Feng Yan, Zhiheng Li, Weixin Luo, Zequn jie, Fan Liang, Xiaolin Wei,
Lin Ma
- Abstract summary: We treat the MOT task as a two-stage task including human detection and trajectory matching.
Specifically, we designed an improved human detector and associated most of detection to guarantee the integrity of the motion trajectory.
Without any model merging, our method achieves 66.672 HOTA and 93.971 MOTA on the DanceTrack challenge dataset.
- Score: 41.88133094982688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This is a brief technical report of our proposed method for Multiple-Object
Tracking (MOT) Challenge in Complex Environments. In this paper, we treat the
MOT task as a two-stage task including human detection and trajectory matching.
Specifically, we designed an improved human detector and associated most of
detection to guarantee the integrity of the motion trajectory. We also propose
a location-wise matching matrix to obtain more accurate trace matching. Without
any model merging, our method achieves 66.672 HOTA and 93.971 MOTA on the
DanceTrack challenge dataset.
Related papers
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - SoccerNet 2023 Tracking Challenge -- 3rd place MOT4MOT Team Technical
Report [0.552480439325792]
The SoccerNet 2023 tracking challenge requires the detection and tracking of soccer players and the ball.
We employ a state-of-the-art online multi-object tracker and a contemporary object detector for player tracking.
Our method achieves 3rd place on the SoccerNet 2023 tracking challenge with a HOTA score of 66.27.
arXiv Detail & Related papers (2023-08-31T11:51:16Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - Rt-Track: Robust Tricks for Multi-Pedestrian Tracking [4.271127739716044]
We propose a novel direction consistency method for smooth trajectory prediction (STP-DC) to increase the modeling of motion information.
We also propose a hyper-grain feature embedding network (HG-FEN) to enhance the modeling of appearance models.
To achieve state-of-the-art performance in MOT, we propose a robust tracker named Rt-track, incorporating various tricks and techniques.
arXiv Detail & Related papers (2023-03-16T22:08:29Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3D multi-object tracking (MOT) is a key problem for autonomous vehicles.
Our proposed solution, InterTrack, generates discriminative object representations for data association.
We validate our approach on the nuScenes 3D MOT benchmark, where we observe significant improvements.
arXiv Detail & Related papers (2022-08-17T03:24:36Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking [83.75789829291475]
We introduce a probabilistic autoregressive motion model to score tracklet proposals.
This is achieved by training our model to learn the underlying distribution of natural tracklets.
Our experiments demonstrate the superiority of our approach at tracking objects in challenging sequences.
arXiv Detail & Related papers (2020-12-03T23:59:27Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
Multiple Object Tracking (MOT) is an important task in computer vision.
We propose the Box-Plane Matching (BPM) method to improve the MOT performacne in dense scenes.
With the effectiveness of the three modules, our team achieves the 1st place on the Track-1 leaderboard in the ACM MM Grand Challenge HiEve 2020.
arXiv Detail & Related papers (2020-07-30T16:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.