Node-oriented Spectral Filtering for Graph Neural Networks
- URL: http://arxiv.org/abs/2212.03654v3
- Date: Thu, 26 Oct 2023 04:01:34 GMT
- Title: Node-oriented Spectral Filtering for Graph Neural Networks
- Authors: Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Youru Li, and Yao Zhao
- Abstract summary: Graph neural networks (GNNs) have shown remarkable performance on homophilic graph data.
In general, learning a universal spectral filter on the graph from the global perspective may still suffer from great difficulty in adapting to the variation of local patterns.
We propose the node-oriented spectral filtering for graph neural network (namely NFGNN)
- Score: 38.0315325181726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have shown remarkable performance on homophilic
graph data while being far less impressive when handling non-homophilic graph
data due to the inherent low-pass filtering property of GNNs. In general, since
real-world graphs are often complex mixtures of diverse subgraph patterns,
learning a universal spectral filter on the graph from the global perspective
as in most current works may still suffer from great difficulty in adapting to
the variation of local patterns. On the basis of the theoretical analysis of
local patterns, we rethink the existing spectral filtering methods and propose
the node-oriented spectral filtering for graph neural network (namely NFGNN).
By estimating the node-oriented spectral filter for each node, NFGNN is
provided with the capability of precise local node positioning via the
generalized translated operator, thus discriminating the variations of local
homophily patterns adaptively. Meanwhile, the utilization of
re-parameterization brings a good trade-off between global consistency and
local sensibility for learning the node-oriented spectral filters. Furthermore,
we theoretically analyze the localization property of NFGNN, demonstrating that
the signal after adaptive filtering is still positioned around the
corresponding node. Extensive experimental results demonstrate that the
proposed NFGNN achieves more favorable performance.
Related papers
- Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
We propose Dual-Frequency Filtering Self-aware Graph Neural Networks (DFGNN)
DFGNN integrates low-pass and high-pass filters to extract smooth and detailed topological features.
It dynamically adjusts filtering ratios to accommodate both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-11-18T04:57:05Z) - Node-wise Filtering in Graph Neural Networks: A Mixture of Experts Approach [58.8524608686851]
Graph Neural Networks (GNNs) have proven to be highly effective for node classification tasks across diverse graph structural patterns.
Traditionally, GNNs employ a uniform global filter, typically a low-pass filter for homophilic graphs and a high-pass filter for heterophilic graphs.
We introduce a novel GNN framework Node-MoE that utilizes a mixture of experts to adaptively select the appropriate filters for different nodes.
arXiv Detail & Related papers (2024-06-05T17:12:38Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - Rethinking Spectral Graph Neural Networks with Spatially Adaptive Filtering [31.595664867365322]
spectral Graph Neural Networks (GNNs) are well-founded in the spectral domain, but their practical reliance on approximation implies a profound linkage to the spatial domain.
We establish a theoretical connection between spectral and spatial aggregation, unveiling an intrinsic interaction that spectral implicitly leads the original graph to an adapted new graph.
We propose a novel Spatially Adaptive Filtering (SAF) framework, which leverages the adapted new graph by spectral filtering for an auxiliary non-local aggregation.
arXiv Detail & Related papers (2024-01-17T09:12:31Z) - ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised
Graph Neural Network [20.924559944655392]
This paper proposes an Adaptive Spectral Wavelet Transform-based Self-Supervised Graph Neural Network (ASWT-SGNN)
ASWT-SGNN accurately approximates the filter function in high-density spectral regions, avoiding costly eigen-decomposition.
It achieves comparable performance to state-of-the-art models in node classification tasks.
arXiv Detail & Related papers (2023-12-10T03:07:42Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Stability to Deformations of Manifold Filters and Manifold Neural Networks [89.53585099149973]
The paper defines and studies manifold (M) convolutional filters and neural networks (NNs)
The main technical contribution of the paper is to analyze the stability of manifold filters and MNNs to smooth deformations of the manifold.
arXiv Detail & Related papers (2021-06-07T15:41:03Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Framework for Designing Filters of Spectral Graph Convolutional Neural
Networks in the Context of Regularization Theory [1.0152838128195467]
Graph convolutional neural networks (GCNNs) have been widely used in graph learning.
It has been observed that the smoothness functional on graphs can be defined in terms of the graph Laplacian.
In this work, we explore the regularization properties of graph Laplacian and proposed a generalized framework for regularized filter designs in spectral GCNNs.
arXiv Detail & Related papers (2020-09-29T06:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.