Framework for Designing Filters of Spectral Graph Convolutional Neural
Networks in the Context of Regularization Theory
- URL: http://arxiv.org/abs/2009.13801v1
- Date: Tue, 29 Sep 2020 06:19:08 GMT
- Title: Framework for Designing Filters of Spectral Graph Convolutional Neural
Networks in the Context of Regularization Theory
- Authors: Asif Salim and Sumitra S
- Abstract summary: Graph convolutional neural networks (GCNNs) have been widely used in graph learning.
It has been observed that the smoothness functional on graphs can be defined in terms of the graph Laplacian.
In this work, we explore the regularization properties of graph Laplacian and proposed a generalized framework for regularized filter designs in spectral GCNNs.
- Score: 1.0152838128195467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional neural networks (GCNNs) have been widely used in graph
learning. It has been observed that the smoothness functional on graphs can be
defined in terms of the graph Laplacian. This fact points out in the direction
of using Laplacian in deriving regularization operators on graphs and its
consequent use with spectral GCNN filter designs. In this work, we explore the
regularization properties of graph Laplacian and proposed a generalized
framework for regularized filter designs in spectral GCNNs. We found that the
filters used in many state-of-the-art GCNNs can be derived as a special case of
the framework we developed. We designed new filters that are associated with
well-defined regularization behavior and tested their performance on
semi-supervised node classification tasks. Their performance was found to be
superior to that of the other state-of-the-art techniques.
Related papers
- GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet) is a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing arbitrary graph spectral filters.
To the best of our knowledge, our work is the first to employ SSMs for the design of graph GNN spectral filters.
Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
arXiv Detail & Related papers (2024-08-16T07:33:58Z) - Node-oriented Spectral Filtering for Graph Neural Networks [38.0315325181726]
Graph neural networks (GNNs) have shown remarkable performance on homophilic graph data.
In general, learning a universal spectral filter on the graph from the global perspective may still suffer from great difficulty in adapting to the variation of local patterns.
We propose the node-oriented spectral filtering for graph neural network (namely NFGNN)
arXiv Detail & Related papers (2022-12-07T14:15:28Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - A Robust Alternative for Graph Convolutional Neural Networks via Graph
Neighborhood Filters [84.20468404544047]
We present a family of graph filters (NGFs) that replace the powers of the graph shift operator with $k$-hop neighborhood adjacency matrices.
NGFs help to alleviate the numerical issues of traditional GFs, allow for the design of deeper GCNNs, and enhance the robustness to errors in the topology of the graph.
arXiv Detail & Related papers (2021-10-02T17:05:27Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks.
While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing.
We propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure.
arXiv Detail & Related papers (2021-09-06T10:59:11Z) - Stability to Deformations of Manifold Filters and Manifold Neural Networks [89.53585099149973]
The paper defines and studies manifold (M) convolutional filters and neural networks (NNs)
The main technical contribution of the paper is to analyze the stability of manifold filters and MNNs to smooth deformations of the manifold.
arXiv Detail & Related papers (2021-06-07T15:41:03Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
We show some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain.
The proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain.
arXiv Detail & Related papers (2020-03-26T01:49:24Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.