論文の概要: Multi-Objective Linear Ensembles for Robust and Sparse Training of Few-Bit Neural Networks
- arxiv url: http://arxiv.org/abs/2212.03659v2
- Date: Wed, 11 Sep 2024 09:15:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 22:28:06.307593
- Title: Multi-Objective Linear Ensembles for Robust and Sparse Training of Few-Bit Neural Networks
- Title(参考訳): 短ビットニューラルネットワークのロバストとスパーストレーニングのための多目的線形アンサンブル
- Authors: Ambrogio Maria Bernardelli, Stefano Gualandi, Hoong Chuin Lau, Simone Milanesi, Neil Yorke-Smith,
- Abstract要約: BNN(Binarized Neural Networks)とINN(Neural Networks)を併用した,数ビット離散値ニューラルネットワークの事例について検討する。
コントリビューションは、可能なクラスごとにひとつのNNをトレーニングし、最終的な出力を予測するために多数決方式を適用する、多目的アンサンブルアプローチである。
我々は,このBeMiアプローチを,BNN学習に焦点をあてた問題解決型NNトレーニングと勾配型トレーニングの最先端技術と比較する。
- 参考スコア(独自算出の注目度): 5.246498560938275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training neural networks (NNs) using combinatorial optimization solvers has gained attention in recent years. In low-data settings, state-of-the-art mixed integer linear programming solvers can train exactly a NN, avoiding intensive GPU-based training and hyper-parameter tuning and simultaneously training and sparsifying the network. We study the case of few-bit discrete-valued neural networks, both Binarized Neural Networks (BNNs), whose values are restricted to +-1, and Integer Neural Networks (INNs), whose values lie in a range {-P, ..., P}. Few-bit NNs receive increasing recognition due to their lightweight architecture and ability to run on low-power devices. This paper proposes new methods to improve the training of BNNs and INNs. Our contribution is a multi-objective ensemble approach based on training a single NN for each possible pair of classes and applying a majority voting scheme to predict the final output. Our approach results in training robust sparsified networks whose output is not affected by small perturbations on the input and whose number of active weights is as small as possible. We compare this BeMi approach to the current state-of-the-art in solver-based NN training and gradient-based training, focusing on BNN learning in few-shot contexts. We compare the benefits and drawbacks of INNs versus BNNs, bringing new light to the distribution of weights over the {-P, ..., P} interval. Finally, we compare multi-objective versus single-objective training of INNs, showing that robustness and network simplicity can be acquired simultaneously, thus obtaining better test performances. While the previous state-of-the-art approaches achieve an average accuracy of 51.1% on the MNIST dataset, the BeMi ensemble approach achieves an average accuracy of 68.4% when trained with 10 images per class and 81.8% when trained with 40 images per class, having up to 75.3% NN links removed.
- Abstract(参考訳): 近年,組合せ最適化を用いたニューラルネットワーク(NN)のトレーニングが注目されている。
低データ設定では、最先端の混合整数線形プログラミングソルバがNNを正確にトレーニングすることができ、GPUベースのトレーニングとハイパーパラメータチューニングを回避し、同時にネットワークをトレーニングし、スパース化することができる。
Integer Neural Networks (Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, Integer Neural Networks, In-P, ..., P}。
軽量なアーキテクチャと低消費電力デバイス上での動作能力により,認識度が向上しているNNは少ない。
本稿では,BNN と INN のトレーニングを改善するための新しい手法を提案する。
コントリビューションは、可能なクラスごとにひとつのNNをトレーニングし、最終的な出力を予測するために多数決方式を適用する、多目的アンサンブルアプローチである。
提案手法は,入力に対する小さな摂動の影響を受けず,アクティブウェイト数が極力少ないロバスト・スパシファイドネットワークを訓練する。
我々は,このBeMiアプローチを,BNN学習に焦点をあてた問題解決型NNトレーニングと勾配型トレーニングの最先端技術と比較する。
INNとBNNの利点と欠点を比較し,<-P, ..., P}間隔における重みの分布に新たな光をもたらす。
最後に、マルチオブジェクトとシングルオブジェクトのトレーニングを比較し、ロバストさとネットワークの単純さを同時に獲得し、より良いテスト性能が得られることを示す。
これまでの最先端のアプローチでは、MNISTデータセットの平均精度は51.1%であったが、BeMiアンサンブルアプローチでは、クラス毎に10のイメージでトレーニングされた場合の平均精度は68.4%、クラス毎に40のイメージでトレーニングされた場合には81.8%で、最大75.3%のNNリンクが削除された。
関連論文リスト
- UnifiedNN: Efficient Neural Network Training on the Cloud [2.1119495676190128]
UnifiedNNは複数のNNモデルを"組み合わせ"し、複数のNNモデルを同時にトレーニングするためのメモリと時間保存機構を備えている。
その結果,UnifiedNNは,最先端フレームワークと比較してメモリ消費を最大52%削減し,トレーニング時間を最大41%削減できることがわかった。
論文 参考訳(メタデータ) (2024-08-02T15:29:39Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - "BNN - BN = ?": Training Binary Neural Networks without Batch
Normalization [92.23297927690149]
バッチ正規化(BN)は、最先端のバイナリニューラルネットワーク(BNN)に不可欠な重要なファシリテータである
BNNのトレーニングに彼らのフレームワークを拡張し、BNNのトレーニングや推論体制からBNを除去できることを初めて実証します。
論文 参考訳(メタデータ) (2021-04-16T16:46:57Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Selfish Sparse RNN Training [13.165729746380816]
本稿では,1回のランでパラメータ数を固定したスパースRNNを,性能を損なうことなく訓練する手法を提案する。
我々はPenn TreeBankとWikitext-2の様々なデータセットを用いて最先端のスパーストレーニング結果を得る。
論文 参考訳(メタデータ) (2021-01-22T10:45:40Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks(SNN)は非同期離散イベント(スパイク)で動作する
本稿では,深層SNNのための計算効率のよいトレーニング手法を提案する。
我々は、SNN上のImageNetデータセットの65.19%のトップ1精度を250タイムステップで達成し、同様の精度で変換されたSNNに比べて10倍高速である。
論文 参考訳(メタデータ) (2020-05-04T19:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。