論文の概要: PaDPaF: Partial Disentanglement with Partially-Federated GANs
- arxiv url: http://arxiv.org/abs/2212.03836v2
- Date: Tue, 28 May 2024 14:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 04:56:05.952419
- Title: PaDPaF: Partial Disentanglement with Partially-Federated GANs
- Title(参考訳): PaDPaF : 部分結合型GANによる部分絡み合い
- Authors: Abdulla Jasem Almansoori, Samuel Horváth, Martin Takáč,
- Abstract要約: フェデレーテッド・ラーニングは、多くの潜在的な現実のアプリケーションで人気のある機械学習パラダイムとなっている。
本研究では,グローバルクライアント非依存とローカルクライアント固有の生成モデルを組み合わせた新しいアーキテクチャを提案する。
提案モデルでは,グローバルな一貫した表現を暗黙的に切り離すことで,プライバシーとパーソナライゼーションを実現する。
- 参考スコア(独自算出の注目度): 5.195669033269619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has become a popular machine learning paradigm with many potential real-life applications, including recommendation systems, the Internet of Things (IoT), healthcare, and self-driving cars. Though most current applications focus on classification-based tasks, learning personalized generative models remains largely unexplored, and their benefits in the heterogeneous setting still need to be better understood. This work proposes a novel architecture combining global client-agnostic and local client-specific generative models. We show that using standard techniques for training federated models, our proposed model achieves privacy and personalization by implicitly disentangling the globally consistent representation (i.e. content) from the client-dependent variations (i.e. style). Using such decomposition, personalized models can generate locally unseen labels while preserving the given style of the client and can predict the labels for all clients with high accuracy by training a simple linear classifier on the global content features. Furthermore, disentanglement enables other essential applications, such as data anonymization, by sharing only the content. Extensive experimental evaluation corroborates our findings, and we also discuss a theoretical motivation for the proposed approach.
- Abstract(参考訳): フェデレーション学習は、レコメンデーションシステム、IoT(Internet of Things)、ヘルスケア、自動運転車など、多くの潜在的な現実のアプリケーションで人気のある機械学習パラダイムとなっている。
現在のほとんどのアプリケーションは分類に基づくタスクに重点を置いているが、パーソナライズされた生成モデルの学習はほとんど探索されていないままであり、不均一な設定におけるそれらの利点をよりよく理解する必要がある。
本研究では,グローバルクライアント非依存とローカルクライアント固有の生成モデルを組み合わせた新しいアーキテクチャを提案する。
本稿では,フェデレーションモデルをトレーニングするための標準手法を用いて,クライアント依存のバリエーション(スタイル)から一貫した表現(コンテンツ)を暗黙的に切り離すことにより,プライバシとパーソナライズを実現していることを示す。
このような分解を用いて、パーソナライズされたモデルは、クライアントの所定のスタイルを保ちながら、ローカルに見えないラベルを生成することができ、グローバルコンテンツ機能上で単純な線形分類器をトレーニングすることで、すべてのクライアントのラベルを高精度に予測することができる。
さらに、コンテンツのみを共有することで、データ匿名化のような他の重要なアプリケーションを可能にする。
本研究の成果を概説し,提案手法の理論的動機についても考察した。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Personalized Federated Learning via Stacking [0.0]
本稿では、クライアントが相互にプライバシ保護モデルを直接送信し、ベースモデルとして使用し、プライベートデータ上でメタモデルをトレーニングする、階層化された一般化に基づく新しいパーソナライズ手法を提案する。
当社のアプローチは柔軟で、さまざまなプライバシ保護技術やモデルタイプを調整し、水平、ハイブリッド、垂直に分割されたフェデレーションに適用できます。
論文 参考訳(メタデータ) (2024-04-16T23:47:23Z) - MAP: Model Aggregation and Personalization in Federated Learning with Incomplete Classes [49.22075916259368]
一部の実世界のアプリケーションでは、データサンプルは通常、ローカルデバイスに分散される。
本稿では,クライアントが不完全なクラスを所有する特別なI.I.D.シーンに焦点を当てる。
提案するMAPアルゴリズムは,FLにおけるアグリゲーションとパーソナライゼーションの目標を同時に達成できる。
論文 参考訳(メタデータ) (2024-04-14T12:22:42Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
我々は,Amortized Bayesian Meta-Learningを通じて,パーソナライズド・フェデレーション・ラーニングの新しい視点を紹介する。
具体的には,クライアント間の階層的変動推論を用いたemphFedABMLという新しいアルゴリズムを提案する。
我々の理論解析は平均一般化誤差の上限を提供し、未知のデータに対する一般化性能を保証する。
論文 参考訳(メタデータ) (2023-07-05T11:58:58Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETsは、Federated Learning(FL)セットアップ内でMixture-of-Experts(MoE)フレームワークを使用することで、新しいソリューションである。
我々の方法は、クライアントの多様性を活用して、クラスのサブセットの異なる専門家を訓練し、最も関係のある専門家に入力をルーティングするゲーティング機能を提供します。
我々の手法は、競争力のあるゼロショット性能を維持しながら、アートFL設定時の精度を最大18%向上させることができる。
論文 参考訳(メタデータ) (2023-06-14T15:47:52Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - PerFED-GAN: Personalized Federated Learning via Generative Adversarial
Networks [46.17495529441229]
フェデレーション学習(Federated Learning)は、AI依存のIoTアプリケーションをデプロイするために使用できる分散機械学習手法である。
本稿では,協調学習とGANに基づく連合学習手法を提案する。
提案手法は,クライアントのモデルアーキテクチャとデータ分布が大きく異なる場合,既存手法の精度を平均42%向上させる。
論文 参考訳(メタデータ) (2022-02-18T12:08:46Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
フェデレーション学習により、クライアントはデータをローカルに保ちながら、統計的モデルを協調的に学習することができる。
最近のパーソナライズされた学習方法は、他のクライアントで利用可能な知識を活用しながら、各クライアントに対して別々のモデルを訓練する。
本稿では,この手法が最先端手法よりも精度と公平性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-11-17T19:40:07Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
そこで我々は,各クライアントが他のクライアントと連携して,クライアント固有の目的ごとのより強力なモデルを得る,フェデレーション学習の代替案を提案する。
基礎となるデータ分布やクライアントの類似性に関する知識を前提とせず、各クライアントが関心のある任意のターゲット分布を最適化できるようにします。
この手法は既存の代替品を上回り、ローカルデータ配信以外の転送のようなパーソナライズされたFLの新機能を可能にする。
論文 参考訳(メタデータ) (2020-12-15T19:30:29Z) - Specialized federated learning using a mixture of experts [0.6974741712647655]
連合学習では、クライアントは分散化されたローカルクライアントデータに基づいてトレーニングされたグローバルモデルを共有する。
フェデレートされた設定で各クライアントのパーソナライズされたモデルを学習するための代替手法を提案する。
以上の結果から,これらの設定におけるデバイスに対するパーソナライズされたモデルとして,エキスパートモデルの混合が適していることが明らかとなった。
論文 参考訳(メタデータ) (2020-10-05T14:43:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。