論文の概要: Hypernetworks for Model-Heterogeneous Personalized Federated Learning
- arxiv url: http://arxiv.org/abs/2507.22330v1
- Date: Wed, 30 Jul 2025 02:24:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:17.927559
- Title: Hypernetworks for Model-Heterogeneous Personalized Federated Learning
- Title(参考訳): モデル不均一な個人化フェデレーション学習のためのハイパーネット
- Authors: Chen Zhang, Husheng Li, Xiang Liu, Linshan Jiang, Danxin Wang,
- Abstract要約: 本稿では、クライアント固有の埋め込みベクトルを入力とし、各クライアントの異種モデルに合わせてパーソナライズされたパラメータを出力するサーバサイドハイパーネットワークを提案する。
知識共有の促進と計算の削減を目的として,ハイパーネットワーク内のマルチヘッド構造を導入し,類似のモデルサイズを持つクライアントがヘッドを共有できるようにする。
我々のフレームワークは外部データセットに依存しておらず、クライアントモデルアーキテクチャの開示を必要としない。
- 参考スコア(独自算出の注目度): 13.408669475480824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in personalized federated learning have focused on addressing client model heterogeneity. However, most existing methods still require external data, rely on model decoupling, or adopt partial learning strategies, which can limit their practicality and scalability. In this paper, we revisit hypernetwork-based methods and leverage their strong generalization capabilities to design a simple yet effective framework for heterogeneous personalized federated learning. Specifically, we propose MH-pFedHN, which leverages a server-side hypernetwork that takes client-specific embedding vectors as input and outputs personalized parameters tailored to each client's heterogeneous model. To promote knowledge sharing and reduce computation, we introduce a multi-head structure within the hypernetwork, allowing clients with similar model sizes to share heads. Furthermore, we further propose MH-pFedHNGD, which integrates an optional lightweight global model to improve generalization. Our framework does not rely on external datasets and does not require disclosure of client model architectures, thereby offering enhanced privacy and flexibility. Extensive experiments on multiple benchmarks and model settings demonstrate that our approach achieves competitive accuracy, strong generalization, and serves as a robust baseline for future research in model-heterogeneous personalized federated learning.
- Abstract(参考訳): パーソナライズド・フェデレーション・ラーニングの最近の進歩は、クライアントモデルの不均一性に対処することに焦点を当てている。
しかし、既存のほとんどのメソッドは、外部データを必要とし、モデルのデカップリングに依存したり、部分的な学習戦略を採用して、実用性とスケーラビリティを制限します。
本稿では,ハイパーネットワークに基づく手法を再検討し,その強力な一般化機能を活用して,異質な個人化フェデレーション学習のためのシンプルで効果的なフレームワークを設計する。
具体的には、クライアント固有の埋め込みベクトルを入力とし、各クライアントの異種モデルに合わせてパーソナライズされたパラメータを出力するサーバ側ハイパーネットワークを利用するMH-pFedHNを提案する。
知識共有の促進と計算の削減を目的として,ハイパーネットワーク内のマルチヘッド構造を導入し,類似のモデルサイズを持つクライアントがヘッドを共有できるようにする。
さらに,MH-pFedHNGDを提案する。
当社のフレームワークは外部データセットに依存しておらず、クライアントモデルアーキテクチャの開示を必要としないため、プライバシーと柔軟性が強化されています。
複数のベンチマークとモデル設定に関する大規模な実験は、我々のアプローチが競争精度、強力な一般化を実現し、モデル・ヘテロジニアス・パーソナライズド・フェデレーションド・ラーニングにおける将来の研究の基盤となることを実証している。
関連論文リスト
- Not All Clients Are Equal: Personalized Federated Learning on Heterogeneous Multi-Modal Clients [52.14230635007546]
ファンデーションモデルは多様なマルチモーダルタスクにまたがって顕著な能力を示してきたが、その集中的なトレーニングはプライバシーの懸念を高め、高い伝達コストを引き起こす。
異なるユーザー目的のためにAIモデルをパーソナライズする需要が高まっているため、パーソナライズされたフェデレーションラーニング(PFL)が出現している。
PFLは、各クライアントが他のクライアントの知識を活用して、データを共有することなく、個々のユーザの好みにさらに適応することを可能にする。
論文 参考訳(メタデータ) (2025-05-20T09:17:07Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
ユーザの行動、好み、デバイス特性の相違から生じるデータの異質性は、連合学習にとって重要な課題である。
本稿では,学習過程におけるクライアントベクトルに基づくアダプティブ重み付けを適応的に調整する手法であるAdaptive Weight Aggregation (FedAWA)を提案する。
論文 参考訳(メタデータ) (2025-03-20T04:49:40Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Personalized Hierarchical Split Federated Learning in Wireless Networks [24.664469755746463]
本稿では、パーソナライズ性能の向上を目的とした、パーソナライズされた階層分割型フェデレーション学習(PHSFL)アルゴリズムを提案する。
まず、モデル分割と階層モデル集約がグローバルモデルに与える影響を理解するために、広範囲な理論的解析を行う。
グローバルモデルがトレーニングされると、各クライアントを微調整してパーソナライズされたモデルを取得します。
論文 参考訳(メタデータ) (2024-11-09T02:41:53Z) - Enhancing One-Shot Federated Learning Through Data and Ensemble
Co-Boosting [76.64235084279292]
ワンショットフェデレートラーニング(One-shot Federated Learning, OFL)は,単一のコミュニケーションラウンドを通じてグローバルサーバモデルのトレーニングを可能にする,有望な学習パラダイムである。
合成されたデータとアンサンブルモデルを相互に拡張する新しいフレームワークであるCo-Boostingを導入する。
論文 参考訳(メタデータ) (2024-02-23T03:15:10Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - PaDPaF: Partial Disentanglement with Partially-Federated GANs [5.195669033269619]
フェデレーテッド・ラーニングは、多くの潜在的な現実のアプリケーションで人気のある機械学習パラダイムとなっている。
本研究では,グローバルクライアント非依存とローカルクライアント固有の生成モデルを組み合わせた新しいアーキテクチャを提案する。
提案モデルでは,グローバルな一貫した表現を暗黙的に切り離すことで,プライバシーとパーソナライゼーションを実現する。
論文 参考訳(メタデータ) (2022-12-07T18:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。