Scaling Qubit Readout with Hardware Efficient Machine Learning
Architectures
- URL: http://arxiv.org/abs/2212.03895v2
- Date: Sat, 17 Jun 2023 05:18:45 GMT
- Title: Scaling Qubit Readout with Hardware Efficient Machine Learning
Architectures
- Authors: Satvik Maurya, Chaithanya Naik Mude, William D. Oliver, Benjamin
Lienhard, Swamit Tannu
- Abstract summary: We propose a scalable approach to improve qubit-state discrimination by using a hierarchy of matched filters in conjunction with a significantly smaller and scalable neural network for qubit-state discrimination.
We achieve substantially higher readout accuracies (16.4% relative improvement) than the baseline with a scalable design that can be readily implemented on off-the-shelf FPGAs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reading a qubit is a fundamental operation in quantum computing. It
translates quantum information into classical information enabling subsequent
classification to assign the qubit states `0' or `1'. Unfortunately, qubit
readout is one of the most error-prone and slowest operations on a
superconducting quantum processor. On state-of-the-art superconducting quantum
processors, readout errors can range from 1-10%. High readout accuracy is
essential for enabling high fidelity for near-term noisy quantum computers and
error-corrected quantum computers of the future.
Prior works have used machine-learning-assisted single-shot qubit-state
classification, where a deep neural network was used for more robust
discrimination by compensating for crosstalk errors. However, the neural
network size can limit the scalability of systems, especially if fast hardware
discrimination is required. This state-of-the-art baseline design cannot be
implemented on off-the-shelf FPGAs used for the control and readout of
superconducting qubits in most systems, which increases the overall readout
latency as discrimination has to be performed in software.
In this work, we propose HERQULES, a scalable approach to improve qubit-state
discrimination by using a hierarchy of matched filters in conjunction with a
significantly smaller and scalable neural network for qubit-state
discrimination. We achieve substantially higher readout accuracies (16.4%
relative improvement) than the baseline with a scalable design that can be
readily implemented on off-the-shelf FPGAs. We also show that HERQULES is more
versatile and can support shorter readout durations than the baseline design
without additional training overheads.
Related papers
- Low-latency machine learning FPGA accelerator for multi-qubit-state discrimination [1.6773398825542363]
Measuring a qubit state is a fundamental yet error-prone operation in quantum computing.
Here, we utilize an integrated approach to deploy neural networks onto field-programmable gate arrays (FPGA)
We demonstrate that implementing a fully connected neural network accelerator for multi-qubit readout is advantageous.
arXiv Detail & Related papers (2024-07-04T11:34:43Z) - ML-Powered FPGA-based Real-Time Quantum State Discrimination Enabling Mid-circuit Measurements [7.469519605046083]
This paper introduces QubiCML, a field-programmable gate array (FPGA) based system for real-time state discrimination.
A multi-layer neural network has been designed and deployed on an FPGA to ensure accurate in-situ state discrimination.
We evaluate QubiCML's performance on superconducting quantum processors and obtained an average accuracy of 98.5% with only 500 ns readout.
arXiv Detail & Related papers (2024-06-27T00:45:37Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Machine Learning based Discrimination for Excited State Promoted Readout [0.0]
A technique known as excited state promoted (ESP) readout was proposed to reduce this effect.
In this work, we use readout data from five-qubit IBMQ devices to measure the effectiveness of using deep neural networks.
arXiv Detail & Related papers (2022-10-16T16:09:46Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Deep Neural Network Discrimination of Multiplexed Superconducting Qubit
States [39.26291658500249]
We present multi-qubit readout using neural networks as state discriminators.
We find that fully-connected feed neural networks increase the qubit-state-assignment fidelity for our system.
arXiv Detail & Related papers (2021-02-24T19:00:00Z) - Scalable Neural Decoder for Topological Surface Codes [0.0]
We present a neural network based decoder for a family of stabilizer codes subject to noise and syndrome measurement errors.
The key innovation is to autodecode error syndromes on small scales by shifting a preprocessing window over the underlying code.
We show that such a preprocessing step allows to effectively reduce the error rate by up to two orders of magnitude in practical applications.
arXiv Detail & Related papers (2021-01-18T19:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.