Efficient and Scalable Architectures for Multi-Level Superconducting Qubit Readout
- URL: http://arxiv.org/abs/2405.08982v2
- Date: Fri, 07 Mar 2025 22:25:33 GMT
- Title: Efficient and Scalable Architectures for Multi-Level Superconducting Qubit Readout
- Authors: Chaithanya Naik Mude, Satvik Maurya, Benjamin Lienhard, Swamit Tannu,
- Abstract summary: Many processor modalities are inherently multi-level systems. This leads to occasional leakage into energy levels outside the computational subspace.<n>We propose a scalable, high-fidelity three-level readout that reduces FPGA resource usage by $60times$ compared to the baseline.<n>Our design supports efficient, real-time implementation on off-the-shelf FPGAs, delivering a 6.6% improvement in readout accuracy over the baseline.
- Score: 0.8999666725996978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Realizing the full potential of quantum computing requires large-scale quantum computers capable of running quantum error correction (QEC) to mitigate hardware errors and maintain quantum data coherence. While quantum computers operate within a two-level computational subspace, many processor modalities are inherently multi-level systems. This leads to occasional leakage into energy levels outside the computational subspace, complicating error detection and undermining QEC protocols. The problem is particularly severe in engineered qubit devices like superconducting transmons, a leading technology for fault-tolerant quantum computing. Addressing this challenge requires effective multi-level quantum system readout to identify and mitigate leakage errors. We propose a scalable, high-fidelity three-level readout that reduces FPGA resource usage by $60\times$ compared to the baseline while reducing readout time by 20\%, enabling faster leakage detection. By employing matched filters to detect relaxation and excitation error patterns and integrating a modular lightweight neural network to correct crosstalk errors, the protocol significantly reduces hardware complexity, achieving a $100\times$ reduction in neural network size. Our design supports efficient, real-time implementation on off-the-shelf FPGAs, delivering a 6.6\% relative improvement in readout accuracy over the baseline. This innovation enables faster leakage mitigation, enhances QEC reliability, and accelerates the path toward fault-tolerant quantum computing.
Related papers
- Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
arXiv Detail & Related papers (2024-06-18T04:50:15Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits [18.641408987868154]
leakage into non-computational states is a common issue in quantum systems including superconducting circuits.
We propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors.
We further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles.
arXiv Detail & Related papers (2024-03-24T13:46:41Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Scaling Qubit Readout with Hardware Efficient Machine Learning
Architectures [0.0]
We propose a scalable approach to improve qubit-state discrimination by using a hierarchy of matched filters in conjunction with a significantly smaller and scalable neural network for qubit-state discrimination.
We achieve substantially higher readout accuracies (16.4% relative improvement) than the baseline with a scalable design that can be readily implemented on off-the-shelf FPGAs.
arXiv Detail & Related papers (2022-12-07T19:00:09Z) - Entanglement recovery in noisy binary quantum information protocols via
three-qubit quantum error correction codes [0.0]
In this paper we investigate the effects of the simple three-qubit QEC codes to restore entanglement and nonlocality in a two-qubit system.
We show that they can avoid the sudden death of entanglement and improve the performance of the addressed protocols also for larger noise amplitudes.
arXiv Detail & Related papers (2022-11-21T09:37:31Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Decomposition of high-rank factorized unitary coupled-cluster operators
using ancilla and multi-qubit controlled low-rank counterparts [0.0]
We propose a set of new schemes that trade off using extra qubits for a reduced gate depth to decompose high-rank UCC excitation operators into significantly lower depth circuits.
These results will remain useful even when fault-tolerant machines are available to reduce the overall state-preparation circuit depth.
arXiv Detail & Related papers (2021-11-04T02:12:18Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Scalable Neural Decoder for Topological Surface Codes [0.0]
We present a neural network based decoder for a family of stabilizer codes subject to noise and syndrome measurement errors.
The key innovation is to autodecode error syndromes on small scales by shifting a preprocessing window over the underlying code.
We show that such a preprocessing step allows to effectively reduce the error rate by up to two orders of magnitude in practical applications.
arXiv Detail & Related papers (2021-01-18T19:02:09Z) - Fault-tolerant qubit from a constant number of components [1.0499611180329804]
Gate error rates in multiple technologies now below the threshold required for fault-tolerant quantum computation.
We propose a fault-tolerant quantum computing scheme that can nonetheless be assembled from a small number of experimental components.
arXiv Detail & Related papers (2020-11-16T19:01:03Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - High-fidelity, high-scalability two-qubit gate scheme for
superconducting qubits [16.01171409402694]
We experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit.
The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%.
Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.
arXiv Detail & Related papers (2020-06-21T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.