Consistency-Aware Anchor Pyramid Network for Crowd Localization
- URL: http://arxiv.org/abs/2212.04067v1
- Date: Thu, 8 Dec 2022 04:32:01 GMT
- Title: Consistency-Aware Anchor Pyramid Network for Crowd Localization
- Authors: Xinyan Liu, Guorong Li, Yuankai Qi, Zhenjun Han, Qingming Huang,
Ming-Hsuan Yang, Nicu Sebe
- Abstract summary: Crowd localization aims to predict the spatial position of humans in a crowd scenario.
We propose an anchor pyramid scheme to adaptively determine the anchor density in each image region.
- Score: 167.93943981468348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crowd localization aims to predict the spatial position of humans in a crowd
scenario. We observe that the performance of existing methods is challenged
from two aspects: (i) ranking inconsistency between test and training phases;
and (ii) fixed anchor resolution may underfit or overfit crowd densities of
local regions. To address these problems, we design a supervision target
reassignment strategy for training to reduce ranking inconsistency and propose
an anchor pyramid scheme to adaptively determine the anchor density in each
image region. Extensive experimental results on three widely adopted datasets
(ShanghaiTech A\&B, JHU-CROWD++, UCF-QNRF) demonstrate the favorable
performance against several state-of-the-art methods.
Related papers
- Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance [59.71186244597394]
We introduce an effective approach to stabilize the proposal-target matching in point-based methods.
We propose Auxiliary Point Guidance (APG) to provide clear and effective guidance for proposal selection and optimization.
We also develop Implicit Feature Interpolation (IFI) to enable adaptive feature extraction in diverse crowd scenarios.
arXiv Detail & Related papers (2024-05-17T07:23:27Z) - Image Copy-Move Forgery Detection via Deep PatchMatch and Pairwise Ranking Learning [39.85737063875394]
This study develops a novel end-to-end CMFD framework that integrates the strengths of conventional and deep learning methods.
Unlike existing deep models, our approach utilizes features extracted from high-resolution scales to seek explicit and reliable point-to-point matching.
By leveraging the strong prior of point-to-point matches, the framework can identify subtle differences and effectively discriminate between source and target regions.
arXiv Detail & Related papers (2024-04-26T10:38:17Z) - Digging Into Normal Incorporated Stereo Matching [18.849192633442453]
We propose a normal incorporated joint learning framework consisting of two specific modules named non-local disparity propagation(NDP) and affinity-aware residual learning(ARL)
By the time we finished this work, our approach ranked 1st for stereo matching across foreground pixels on the KITTI 2015 dataset and 3rd on the Scene Flow dataset among all the published works.
arXiv Detail & Related papers (2024-02-28T09:01:50Z) - Two-Stage Adaptive Network for Semi-Supervised Cross-Domain Crater Detection under Varying Scenario Distributions [17.28368878719324]
We propose a two-stage adaptive network (TAN) for cross-domain crater detection.
Our network is built on the YOLOv5 detector, where a series of strategies are employed to enhance its cross-domain generalisation ability.
Experimental results on benchmark datasets demonstrate that the proposed network can enhance domain adaptation ability for crater detection under varying scenario distributions.
arXiv Detail & Related papers (2023-12-11T07:16:49Z) - Implicit neural representation for change detection [15.741202788959075]
Most commonly used approaches to detecting changes in point clouds are based on supervised methods.
We propose an unsupervised approach that comprises two components: Implicit Neural Representation (INR) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes.
We apply our method to a benchmark dataset comprising simulated LiDAR point clouds for urban sprawling.
arXiv Detail & Related papers (2023-07-28T09:26:00Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Enhancing Prototypical Few-Shot Learning by Leveraging the Local-Level
Strategy [75.63022284445945]
We find that the existing works often build their few-shot model based on the image-level feature by mixing all local-level features.
We present (a) a local-agnostic training strategy to avoid the discriminative location bias between the base and novel categories, and (b) a novel local-level similarity measure to capture the accurate comparison between local-level features.
arXiv Detail & Related papers (2021-11-08T08:45:15Z) - Domain Adaptive Semantic Segmentation with Regional Contrastive
Consistency Regularization [19.279884432843822]
We propose a novel and fully end-to-end trainable approach, called regional contrastive consistency regularization (RCCR) for domain adaptive semantic segmentation.
Our core idea is to pull the similar regional features extracted from the same location of different images to be closer, and meanwhile push the features from the different locations of the two images to be separated.
arXiv Detail & Related papers (2021-10-11T11:45:00Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Contradictory Structure Learning for Semi-supervised Domain Adaptation [67.89665267469053]
Current adversarial adaptation methods attempt to align the cross-domain features.
Two challenges remain unsolved: 1) the conditional distribution mismatch and 2) the bias of the decision boundary towards the source domain.
We propose a novel framework for semi-supervised domain adaptation by unifying the learning of opposite structures.
arXiv Detail & Related papers (2020-02-06T22:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.