Digging Into Normal Incorporated Stereo Matching
- URL: http://arxiv.org/abs/2402.18171v1
- Date: Wed, 28 Feb 2024 09:01:50 GMT
- Title: Digging Into Normal Incorporated Stereo Matching
- Authors: Zihua Liu, Songyan Zhang, Zhicheng Wang and Masatoshi Okutomi
- Abstract summary: We propose a normal incorporated joint learning framework consisting of two specific modules named non-local disparity propagation(NDP) and affinity-aware residual learning(ARL)
By the time we finished this work, our approach ranked 1st for stereo matching across foreground pixels on the KITTI 2015 dataset and 3rd on the Scene Flow dataset among all the published works.
- Score: 18.849192633442453
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Despite the remarkable progress facilitated by learning-based stereo-matching
algorithms, disparity estimation in low-texture, occluded, and bordered regions
still remains a bottleneck that limits the performance. To tackle these
challenges, geometric guidance like plane information is necessary as it
provides intuitive guidance about disparity consistency and affinity
similarity. In this paper, we propose a normal incorporated joint learning
framework consisting of two specific modules named non-local disparity
propagation(NDP) and affinity-aware residual learning(ARL). The estimated
normal map is first utilized for calculating a non-local affinity matrix and a
non-local offset to perform spatial propagation at the disparity level. To
enhance geometric consistency, especially in low-texture regions, the estimated
normal map is then leveraged to calculate a local affinity matrix, providing
the residual learning with information about where the correction should refer
and thus improving the residual learning efficiency. Extensive experiments on
several public datasets including Scene Flow, KITTI 2015, and Middlebury 2014
validate the effectiveness of our proposed method. By the time we finished this
work, our approach ranked 1st for stereo matching across foreground pixels on
the KITTI 2015 dataset and 3rd on the Scene Flow dataset among all the
published works.
Related papers
- Coupled Laplacian Eigenmaps for Locally-Aware 3D Rigid Point Cloud Matching [0.0]
We propose a new technique, based on graph Laplacian eigenmaps, to match point clouds by taking into account fine local structures.
To deal with the order and sign ambiguity of Laplacian eigenmaps, we introduce a new operator, called Coupled Laplacian.
We show that the similarity between those aligned high-dimensional spaces provides a locally meaningful score to match shapes.
arXiv Detail & Related papers (2024-02-27T10:10:12Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Okapi: Generalising Better by Making Statistical Matches Match [7.392460712829188]
Okapi is a simple, efficient, and general method for robust semi-supervised learning based on online statistical matching.
Our method uses a nearest-neighbours-based matching procedure to generate cross-domain views for a consistency loss.
We show that it is in fact possible to leverage additional unlabelled data to improve upon empirical risk minimisation.
arXiv Detail & Related papers (2022-11-07T12:41:17Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Tackling Long-Tailed Category Distribution Under Domain Shifts [50.21255304847395]
Existing approaches cannot handle the scenario where both issues exist.
We designed three novel core functional blocks including Distribution Calibrated Classification Loss, Visual-Semantic Mapping and Semantic-Similarity Guided Augmentation.
Two new datasets were proposed for this problem, named AWA2-LTS and ImageNet-LTS.
arXiv Detail & Related papers (2022-07-20T19:07:46Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
In this work, a general architecture is first formulated probabilistically to extract domain invariant feature through multi-domain image translation.
And then a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy.
Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMUSeasons dataset.
Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision.
arXiv Detail & Related papers (2020-09-16T14:43:22Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z) - Focus on Semantic Consistency for Cross-domain Crowd Understanding [34.560447389853614]
Some domain adaptation algorithms try to liberate it by training models with synthetic data.
We found that a mass of estimation errors in the background areas impede the performance of the existing methods.
In this paper, we propose a domain adaptation method to eliminate it.
arXiv Detail & Related papers (2020-02-20T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.