Mind the Gap: Measuring Generalization Performance Across Multiple
Objectives
- URL: http://arxiv.org/abs/2212.04183v1
- Date: Thu, 8 Dec 2022 10:53:56 GMT
- Title: Mind the Gap: Measuring Generalization Performance Across Multiple
Objectives
- Authors: Matthias Feurer, Katharina Eggensperger, Edward Bergman, Florian
Pfisterer, Bernd Bischl, Frank Hutter
- Abstract summary: We present a novel evaluation protocol that allows measuring the generalization performance of MHPO methods.
We also study its capabilities for comparing two optimization experiments.
- Score: 29.889018459046316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern machine learning models are often constructed taking into account
multiple objectives, e.g., to minimize inference time while also maximizing
accuracy. Multi-objective hyperparameter optimization (MHPO) algorithms return
such candidate models and the approximation of the Pareto front is used to
assess their performance. However, when estimating generalization performance
of an approximation of a Pareto front found on a validation set by computing
the performance of the individual models on the test set, models might no
longer be Pareto-optimal. This makes it unclear how to measure performance. To
resolve this, we provide a novel evaluation protocol that allows measuring the
generalization performance of MHPO methods and to study its capabilities for
comparing two optimization experiments.
Related papers
- MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
We propose a human-centered interactive HPO approach tailored towards multi-objective machine learning (ML)
Instead of relying on the user guessing the most suitable indicator for their needs, our approach automatically learns an appropriate indicator.
arXiv Detail & Related papers (2023-09-07T09:22:05Z) - Optimizing Hyperparameters with Conformal Quantile Regression [7.316604052864345]
We propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise.
This translates to quicker HPO convergence on empirical benchmarks.
arXiv Detail & Related papers (2023-05-05T15:33:39Z) - Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
This paper proposes an agent-based collaborative technique for finding near-optimal values for any arbitrary set of hyper- parameters in a machine learning model.
The behavior of the presented model, specifically against the changes in its design parameters, is investigated in both machine learning and global function optimization applications.
arXiv Detail & Related papers (2023-03-03T21:10:17Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Post-hoc Models for Performance Estimation of Machine Learning Inference [22.977047604404884]
Estimating how well a machine learning model performs during inference is critical in a variety of scenarios.
We systematically generalize performance estimation to a diverse set of metrics and scenarios.
We find that proposed post-hoc models consistently outperform the standard confidence baselines.
arXiv Detail & Related papers (2021-10-06T02:20:37Z) - Multi-objective Asynchronous Successive Halving [10.632606255280649]
We propose algorithms that extend successive asynchronous halving (ASHA) to the multi-objective (MO) setting.
Our empirical analysis shows that MO ASHA enables to perform MO HPO at scale.
Our algorithms establish new baselines for future research in the area.
arXiv Detail & Related papers (2021-06-23T19:39:31Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.