論文の概要: A probabilistic autoencoder for causal discovery
- arxiv url: http://arxiv.org/abs/2212.04235v1
- Date: Thu, 8 Dec 2022 12:33:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 15:15:18.954224
- Title: A probabilistic autoencoder for causal discovery
- Title(参考訳): 因果発見のための確率的オートエンコーダ
- Authors: Matthias Feiler
- Abstract要約: 本稿では,2つの変数間の因果方向を求める問題に対処する。
提案手法は関節分布の自動エンコーダの構築と推定能力の最大化である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper addresses the problem of finding the causal direction between two
associated variables. The proposed solution is to build an autoencoder of their
joint distribution and to maximize its estimation capacity relative to both the
marginal distributions. It is shown that the resulting two capacities cannot,
in general, be equal. This leads to a new criterion for causal discovery: the
higher capacity is consistent with the unconstrained choice of a distribution
representing the cause while the lower capacity reflects the constraints
imposed by the mechanism on the distribution of the effect. Estimation capacity
is defined as the ability of the auto-encoder to represent arbitrary datasets.
A regularization term forces it to decide which one of the variables to model
in a more generic way i.e., while maintaining higher model capacity. The causal
direction is revealed by the constraints encountered while encoding the data
instead of being measured as a property of the data itself. The idea is
implemented and tested using a restricted Boltzmann machine.
- Abstract(参考訳): 本稿は,二つの変数間の因果方向を求める問題に対処する。
提案手法は, ジョイント分布の自動エンコーダを構築し, 両者の限界分布に対する推定容量を最大化するものである。
結果として得られる2つの容量は、一般には等しくはならない。
これは因果発見の新しい基準につながる: 高い容量は原因を表す分布の制約のない選択と一致し、低い容量は効果の分配のメカニズムによって課される制約を反映している。
推定能力は、任意のデータセットを表す自動エンコーダの能力として定義される。
正規化項は、より高いモデル容量を維持しながら、より汎用的な方法でモデル化すべき変数のどれかを決定することを強いる。
因果方向は、データ自体の特性として測定されるのではなく、データエンコーディング中に発生する制約によって明らかにされる。
このアイデアは制限付きボルツマンマシンを用いて実装およびテストされている。
関連論文リスト
- Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Optimal Regularization for a Data Source [8.38093977965175]
解の量を促進する正則化器でデータの忠実性を強制する基準を強化するのが一般的である。
本稿では,凸正則化のパワーと限界の体系的理解を求める。
論文 参考訳(メタデータ) (2022-12-27T20:11:59Z) - Neuro-Symbolic Entropy Regularization [78.16196949641079]
構造化予測では、目的は構造化されたオブジェクトをエンコードする多くの出力変数を共同で予測することである。
エントロピー正則化(Entropy regularization)という1つのアプローチは、決定境界が低確率領域にあるべきであることを示唆している。
我々は、モデルが有効対象を確実に予測することを奨励する損失、ニューロシンボリックエントロピー正規化を提案する。
論文 参考訳(メタデータ) (2022-01-25T06:23:10Z) - Understanding Interlocking Dynamics of Cooperative Rationalization [90.6863969334526]
選択的合理化(Selective rationalization)は、ニューラルネットワークの出力を予測するのに十分な入力の小さなサブセットを見つけることによって、複雑なニューラルネットワークの予測を説明する。
このような合理化パラダイムでは,モデルインターロックという大きな問題が浮かび上がっている。
A2Rと呼ばれる新しい合理化フレームワークを提案し、アーキテクチャに第3のコンポーネントを導入し、選択とは対照的にソフトアテンションによって駆動される予測器を提案する。
論文 参考訳(メタデータ) (2021-10-26T17:39:18Z) - Inferential Wasserstein Generative Adversarial Networks [9.859829604054127]
自動エンコーダとWGANを融合する原理的フレームワークである新しい推論ワッサースタインGAN(iWGAN)モデルを導入する。
iWGANはモード崩壊の症状を大幅に緩和し、収束を高速化し、各サンプルの品質チェックの測定を行うことができる。
論文 参考訳(メタデータ) (2021-09-13T00:43:21Z) - Low-rank Characteristic Tensor Density Estimation Part II: Compression
and Latent Density Estimation [31.631861197477185]
生成確率モデルを学習することは、機械学習における中核的な問題である。
本稿では,共同次元化と非パラメトリック密度推定の枠組みを提案する。
提案手法は, 回帰処理, サンプリング, 異常検出において, 極めて有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-06-20T00:38:56Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
分離性の現象が明らかになり、機械学習で人工知能(AI)システムのエラーを修正し、AI不安定性を分析するために使用された。
エラーやエラーのクラスタは、残りのデータから分離することができる。
AIシステムを修正する能力は、それに対する攻撃の可能性も開き、高次元性は、同じ分離性によって引き起こされる脆弱性を誘発する。
論文 参考訳(メタデータ) (2020-10-11T13:12:41Z) - Generalizing Variational Autoencoders with Hierarchical Empirical Bayes [6.273154057349038]
確率的生成モデルのための計算的に安定なフレームワークである階層的経験的ベイズオートエンコーダ(HEBAE)を提案する。
鍵となる貢献は2つであり、まず、符号化分布を階層的に優先することで、再構成損失関数の最小化と過正規化の回避とのトレードオフを適応的にバランスさせることで、利益を得る。
論文 参考訳(メタデータ) (2020-07-20T18:18:39Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。