論文の概要: On The Relevance Of The Differences Between HRTF Measurement Setups For
Machine Learning
- arxiv url: http://arxiv.org/abs/2212.04283v1
- Date: Thu, 8 Dec 2022 14:19:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 15:05:16.108696
- Title: On The Relevance Of The Differences Between HRTF Measurement Setups For
Machine Learning
- Title(参考訳): 機械学習におけるHRTF測定セットの違いの関連性について
- Authors: Johan Pauwels and Lorenzo Picinali
- Abstract要約: 空間オーディオは人気が急上昇しています
他の領域で成功した機械学習技術は、頭部関連伝達関数の測定にますます使われている。
複数のデータセットを組み合わせるのは魅力的だが、異なる条件下で測定される。
- 参考スコア(独自算出の注目度): 0.24366811507669117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As spatial audio is enjoying a surge in popularity, data-driven machine
learning techniques that have been proven successful in other domains are
increasingly used to process head-related transfer function measurements.
However, these techniques require much data, whereas the existing datasets are
ranging from tens to the low hundreds of datapoints. It therefore becomes
attractive to combine multiple of these datasets, although they are measured
under different conditions. In this paper, we first establish the common ground
between a number of datasets, then we investigate potential pitfalls of mixing
datasets. We perform a simple experiment to test the relevance of the remaining
differences between datasets when applying machine learning techniques.
Finally, we pinpoint the most relevant differences.
- Abstract(参考訳): 空間オーディオの人気が高まっている中、他の領域で成功しているデータ駆動機械学習技術は、頭部伝達関数の測定にますます利用されている。
しかし、これらの技術は大量のデータを必要とするが、既存のデータセットは数十から数百のデータポイントの範囲である。
したがって、複数のデータセットを組み合わせることは魅力的になるが、異なる条件下で測定される。
本稿では,まず,複数のデータセット間の共通基盤を確立し,次に混合データセットの潜在的な落とし穴について検討する。
機械学習技術を適用した場合、データセット間の残差の関連性をテストするための簡単な実験を行う。
最後に、最も重要な違いを指摘します。
関連論文リスト
- UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - What is different between these datasets? [23.271594219577185]
同じドメイン内の2つの同等のデータセットは、異なる分布を持つ可能性がある。
本稿では,2つのデータセットを比較するための解釈可能な手法(ツールボックス)を提案する。
我々の手法は、説明品質と正確性の観点から比較および関連するアプローチよりも優れているだけでなく、データセットの違いを効果的に理解し軽減するための実用的な補完的な洞察を提供する。
論文 参考訳(メタデータ) (2024-03-08T19:52:39Z) - D3A-TS: Denoising-Driven Data Augmentation in Time Series [0.0]
本研究は,分類と回帰問題に対する時系列におけるデータ拡張のための異なる手法の研究と分析に焦点をあてる。
提案手法は拡散確率モデルを用いており、近年画像処理の分野で成功している。
その結果、この手法が、分類と回帰モデルを訓練するための合成データを作成する上で、高い有用性を示している。
論文 参考訳(メタデータ) (2023-12-09T11:37:07Z) - Combining datasets to increase the number of samples and improve model
fitting [7.4771091238795595]
我々はImp(ComImp)に基づくコンバインドデータセットと呼ばれる新しいフレームワークを提案する。
さらに,PCA,PCA-ComImpを用いたComImpの変種を提案する。
提案手法は,より小さなデータセット上での予測モデルの精度を大幅に向上させることで,転送学習と幾らか類似していることが示唆された。
論文 参考訳(メタデータ) (2022-10-11T06:06:37Z) - Metadata Archaeology: Unearthing Data Subsets by Leveraging Training
Dynamics [3.9627732117855414]
メタデータ考古学のための統一的で効率的なフレームワークを提供することに注力する。
データセットに存在する可能性のあるデータのさまざまなサブセットをキュレートします。
これらのプローブスイート間の学習力学の相違を利用して、関心のメタデータを推測する。
論文 参考訳(メタデータ) (2022-09-20T21:52:39Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
新しいデザイン(De Detection Hubという名前)は、データセット認識とカテゴリ整列である。
データセットの不整合を緩和し、検出器が複数のデータセットをまたいで学習するための一貫性のあるガイダンスを提供する。
データセット間のカテゴリは、ワンホットなカテゴリ表現を単語埋め込みに置き換えることで、意味的に統一された空間に整列される。
論文 参考訳(メタデータ) (2022-06-07T17:59:44Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Enhancing ensemble learning and transfer learning in multimodal data
analysis by adaptive dimensionality reduction [10.646114896709717]
マルチモーダルデータ分析では、すべての観測が同じレベルの信頼性や情報品質を示すわけではない。
この問題を克服するために,次元削減のための適応的アプローチを提案する。
多様な研究分野で得られたマルチモーダルデータセットのアプローチをテストします。
論文 参考訳(メタデータ) (2021-05-08T11:53:12Z) - DAIL: Dataset-Aware and Invariant Learning for Face Recognition [67.4903809903022]
顔認識の性能向上のためには、通常大規模なトレーニングデータセットが必要である。
2つの大きな問題のために異なるデータセットを自然に組み合わせるのは問題で面倒です。
トレーニング中に異なるデータセットの異なるクラスと同じ人を扱うことは、バックプロパゲーションに影響します。
手動でラベルをクリーニングするには 人的努力が要る 特に何百万もの画像と何千ものIDがある時は
論文 参考訳(メタデータ) (2021-01-14T01:59:52Z) - dMelodies: A Music Dataset for Disentanglement Learning [70.90415511736089]
我々は、研究者が様々な領域でアルゴリズムの有効性を実証するのに役立つ新しいシンボリック・ミュージック・データセットを提案する。
これはまた、音楽用に特別に設計されたアルゴリズムを評価する手段を提供する。
データセットは、遠絡学習のためのディープネットワークのトレーニングとテストに十分な大きさ(約13万データポイント)である。
論文 参考訳(メタデータ) (2020-07-29T19:20:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。