A Scale-Arbitrary Image Super-Resolution Network Using Frequency-domain
Information
- URL: http://arxiv.org/abs/2212.04314v1
- Date: Thu, 8 Dec 2022 15:10:49 GMT
- Title: A Scale-Arbitrary Image Super-Resolution Network Using Frequency-domain
Information
- Authors: Jing Fang, Yinbo Yu, Zhongyuan Wang, Xin Ding, Ruimin Hu
- Abstract summary: Image super-resolution (SR) is a technique to recover lost high-frequency information in low-resolution (LR) images.
In this paper, we study image features in the frequency domain to design a novel scale-arbitrary image SR network.
- Score: 42.55177009667711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image super-resolution (SR) is a technique to recover lost high-frequency
information in low-resolution (LR) images. Spatial-domain information has been
widely exploited to implement image SR, so a new trend is to involve
frequency-domain information in SR tasks. Besides, image SR is typically
application-oriented and various computer vision tasks call for image arbitrary
magnification. Therefore, in this paper, we study image features in the
frequency domain to design a novel scale-arbitrary image SR network. First, we
statistically analyze LR-HR image pairs of several datasets under different
scale factors and find that the high-frequency spectra of different images
under different scale factors suffer from different degrees of degradation, but
the valid low-frequency spectra tend to be retained within a certain
distribution range. Then, based on this finding, we devise an adaptive
scale-aware feature division mechanism using deep reinforcement learning, which
can accurately and adaptively divide the frequency spectrum into the
low-frequency part to be retained and the high-frequency one to be recovered.
Finally, we design a scale-aware feature recovery module to capture and fuse
multi-level features for reconstructing the high-frequency spectrum at
arbitrary scale factors. Extensive experiments on public datasets show the
superiority of our method compared with state-of-the-art methods.
Related papers
- FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method.
During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images.
During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images.
arXiv Detail & Related papers (2024-08-25T03:53:17Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Multi-scale frequency separation network for image deblurring [10.511076996096117]
We present a new method called multi-scale frequency separation network (MSFS-Net) for image deblurring.
MSFS-Net captures the low and high-frequency information of image at multiple scales.
Experiments on benchmark datasets show that the proposed network achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-06-01T23:48:35Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
Single image super-resolution(SISR) is an ill-posed problem that aims to obtain high-resolution (HR) output from low-resolution (LR) input.
Despite the high peak signal-to-noise ratios(PSNR) results, it is difficult to determine whether the model correctly adds desired high-frequency details.
We propose FreqNet, an intuitive pipeline from the frequency domain perspective, to solve this problem.
arXiv Detail & Related papers (2021-11-21T11:49:12Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Learning Omni-frequency Region-adaptive Representations for Real Image
Super-Resolution [37.74756727980146]
Key to solving real image super-resolution (RealSR) problem lies in learning feature representations that are both informative and content-aware.
In this paper, we propose an Omni-frequency Region-adaptive Network (ORNet) to address both challenges.
arXiv Detail & Related papers (2020-12-11T05:17:38Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
Image Super-Resolution (SR) provides a promising technique to enhance the image quality of low-resolution optical sensors.
In this paper, we attempt to leverage complementary information from a low-cost channel (visible/depth) to boost image quality of an expensive channel (thermal) using fewer parameters.
arXiv Detail & Related papers (2020-12-07T02:15:28Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.