Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution
- URL: http://arxiv.org/abs/2411.12530v1
- Date: Tue, 19 Nov 2024 14:24:03 GMT
- Title: Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution
- Authors: Yang Zou, Zhixin Chen, Zhipeng Zhang, Xingyuan Li, Long Ma, Jinyuan Liu, Peng Wang, Yanning Zhang,
- Abstract summary: Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
- Score: 54.293362972473595
- License:
- Abstract: Image super-resolution (SR) is a classical yet still active low-level vision problem that aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts, serving as a key technique for image enhancement. Current approaches to address SR tasks, such as transformer-based and diffusion-based methods, are either dedicated to extracting RGB image features or assuming similar degradation patterns, neglecting the inherent modal disparities between infrared and visible images. When directly applied to infrared image SR tasks, these methods inevitably distort the infrared spectral distribution, compromising the machine perception in downstream tasks. In this work, we emphasize the infrared spectral distribution fidelity and propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity. Our approach captures high-pass subbands from multi-scale and multi-directional infrared spectral decomposition to recover infrared-degraded information through a gate architecture. The proposed Spectral Fidelity Loss regularizes the spectral frequency distribution during reconstruction, which ensures the preservation of both high- and low-frequency components and maintains the fidelity of infrared-specific features. We propose a two-stage prompt-learning optimization to guide the model in learning infrared HR characteristics from LR degradation. Extensive experiments demonstrate that our approach outperforms existing image SR models in both visual and perceptual tasks while notably enhancing machine perception in downstream tasks. Our code is available at https://github.com/hey-it-s-me/CoRPLE.
Related papers
- Infrared Image Super-Resolution via Lightweight Information Split Network [15.767636844406493]
We introduce a novel, efficient, and precise single infrared image SR model, termed the Lightweight Information Split Network (LISN)
The LISN comprises four main components: shallow feature extraction, deep feature extraction, dense feature fusion, and high-resolution infrared image reconstruction.
A key innovation within this model is the introduction of the Lightweight Information Split Block (LISB) for deep feature extraction.
arXiv Detail & Related papers (2024-05-17T06:10:42Z) - Frequency Domain Modality-invariant Feature Learning for
Visible-infrared Person Re-Identification [79.9402521412239]
We propose a novel Frequency Domain modality-invariant feature learning framework (FDMNet) to reduce modality discrepancy from the frequency domain perspective.
Our framework introduces two novel modules, namely the Instance-Adaptive Amplitude Filter (IAF) and the Phrase-Preserving Normalization (PPNorm)
arXiv Detail & Related papers (2024-01-03T17:11:27Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - A Scale-Arbitrary Image Super-Resolution Network Using Frequency-domain
Information [42.55177009667711]
Image super-resolution (SR) is a technique to recover lost high-frequency information in low-resolution (LR) images.
In this paper, we study image features in the frequency domain to design a novel scale-arbitrary image SR network.
arXiv Detail & Related papers (2022-12-08T15:10:49Z) - Unsupervised Misaligned Infrared and Visible Image Fusion via
Cross-Modality Image Generation and Registration [59.02821429555375]
We present a robust cross-modality generation-registration paradigm for unsupervised misaligned infrared and visible image fusion.
To better fuse the registered infrared images and visible images, we present a feature Interaction Fusion Module (IFM)
arXiv Detail & Related papers (2022-05-24T07:51:57Z) - Thermal Image Super-Resolution Using Second-Order Channel Attention with
Varying Receptive Fields [4.991042925292453]
We introduce a system to efficiently reconstruct thermal images.
The restoration of thermal images is critical for applications that involve safety, search and rescue, and military operations.
arXiv Detail & Related papers (2021-07-30T22:17:51Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use.
This paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery.
arXiv Detail & Related papers (2021-03-26T19:42:21Z) - SFANet: A Spectrum-aware Feature Augmentation Network for
Visible-Infrared Person Re-Identification [12.566284647658053]
We propose a novel spectrum-aware feature augementation network named SFANet for cross-modality matching problem.
Learning with grayscale-spectrum images, our model can apparently reduce modality discrepancy and detect inner structure relations.
In feature-level, we improve the conventional two-stream network through balancing the number of specific and sharable convolutional blocks.
arXiv Detail & Related papers (2021-02-24T08:57:32Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Cross-Spectrum Dual-Subspace Pairing for RGB-infrared Cross-Modality
Person Re-Identification [15.475897856494583]
Conventional person re-identification can only handle RGB color images, which will fail at dark conditions.
RGB-infrared ReID (also known as Infrared-Visible ReID or Visible-Thermal ReID) is proposed.
In this paper, a novel multi-spectrum image generation method is proposed and the generated samples are utilized to help the network to find discriminative information.
arXiv Detail & Related papers (2020-02-29T09:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.