Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
- URL: http://arxiv.org/abs/2212.04371v2
- Date: Tue, 2 Jul 2024 18:03:28 GMT
- Title: Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
- Authors: Ergute Bao, Yizheng Zhu, Xiaokui Xiao, Yin Yang, Beng Chin Ooi, Benjamin Hong Meng Tan, Khin Mi Mi Aung,
- Abstract summary: This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model.
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern.
An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients.
- Score: 27.906539122581293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.
Related papers
- DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing [51.336015600778396]
Federated Learning (FL) has gained lots of traction recently, both in industry and academia.
In FL, a machine learning model is trained using data from various end-users arranged in committees across several rounds.
Since such data can often be sensitive, a primary challenge in FL is providing privacy while still retaining utility of the model.
arXiv Detail & Related papers (2024-10-21T16:25:14Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - Mitigating Disparate Impact of Differential Privacy in Federated Learning through Robust Clustering [4.768272342753616]
Federated Learning (FL) is a decentralized machine learning (ML) approach that keeps data localized and often incorporates Differential Privacy (DP) to enhance privacy guarantees.
Recent work has attempted to address performance fairness in vanilla FL through clustering, but this method remains sensitive and prone to errors.
We propose a novel clustered DPFL algorithm designed to effectively identify clients' clusters in highly heterogeneous settings.
arXiv Detail & Related papers (2024-05-29T17:03:31Z) - QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution [1.565361244756411]
Federated learning (FL) is a framework which allows multiple users to jointly train a global machine learning (ML) model.
One key motivation of such distributed frameworks is to provide privacy guarantees to the users.
We present a novel quantization method, utilizing a mixed geometric distribution to introduce the randomness needed to provide DP.
arXiv Detail & Related papers (2023-12-10T04:44:53Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling [23.8561225168394]
differential privacy (DP) has become a well-accepted standard for privacy protection, and deep neural networks (DNN) have been immensely successful in machine learning.
A classic mechanism for this purpose is DP-SGD, which is a differentially private version of the gradient descent (SGD) commonly used for training.
We propose DPIS, a novel mechanism for differentially private SGD training that can be used as a drop-in replacement of the core of DP-SGD.
arXiv Detail & Related papers (2022-10-18T07:03:14Z) - FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
Modulation [69.34011200590817]
We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation.
By modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity.
We show that FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very close to the upper bound of an explicit ensemble of networks.
arXiv Detail & Related papers (2022-05-31T18:33:15Z) - Federated Learning with Sparsified Model Perturbation: Improving
Accuracy under Client-Level Differential Privacy [27.243322019117144]
Federated learning (FL) enables distributed clients to collaboratively learn a shared statistical model.
sensitive information about the training data can still be inferred from model updates shared in FL.
Differential privacy (DP) is the state-of-the-art technique to defend against those attacks.
This paper develops a novel FL scheme named Fed-SMP that provides client-level DP guarantee while maintaining high model accuracy.
arXiv Detail & Related papers (2022-02-15T04:05:42Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.