QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution
- URL: http://arxiv.org/abs/2312.05761v2
- Date: Tue, 11 Jun 2024 01:52:05 GMT
- Title: QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution
- Authors: Zixi Wang, M. Cenk Gursoy,
- Abstract summary: Federated learning (FL) is a framework which allows multiple users to jointly train a global machine learning (ML) model.
One key motivation of such distributed frameworks is to provide privacy guarantees to the users.
We present a novel quantization method, utilizing a mixed geometric distribution to introduce the randomness needed to provide DP.
- Score: 1.565361244756411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a framework which allows multiple users to jointly train a global machine learning (ML) model by transmitting only model updates under the coordination of a parameter server, while being able to keep their datasets local. One key motivation of such distributed frameworks is to provide privacy guarantees to the users. However, preserving the users' datasets locally is shown to be not sufficient for privacy. Several differential privacy (DP) mechanisms have been proposed to provide provable privacy guarantees by introducing randomness into the framework, and majority of these mechanisms rely on injecting additive noise. FL frameworks also face the challenge of communication efficiency, especially as machine learning models grow in complexity and size. Quantization is a commonly utilized method, reducing the communication cost by transmitting compressed representation of the underlying information. Although there have been several studies on DP and quantization in FL, the potential contribution of the quantization method alone in providing privacy guarantees has not been extensively analyzed yet. We in this paper present a novel stochastic quantization method, utilizing a mixed geometric distribution to introduce the randomness needed to provide DP, without any additive noise. We provide convergence analysis for our framework and empirically study its performance.
Related papers
- DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing [51.336015600778396]
Federated Learning (FL) has gained lots of traction recently, both in industry and academia.
In FL, a machine learning model is trained using data from various end-users arranged in committees across several rounds.
Since such data can often be sensitive, a primary challenge in FL is providing privacy while still retaining utility of the model.
arXiv Detail & Related papers (2024-10-21T16:25:14Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Randomized Quantization is All You Need for Differential Privacy in
Federated Learning [1.9785872350085876]
We consider an approach to federated learning that combines quantization and differential privacy.
We develop a new algorithm called the textbfRandomized textbfQuantization textbfMechanism (RQM)
We empirically study the performance of our algorithm and demonstrate that compared to previous work it yields improved privacy-accuracy trade-offs.
arXiv Detail & Related papers (2023-06-20T21:54:13Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Balancing Privacy and Performance for Private Federated Learning
Algorithms [4.681076651230371]
Federated learning (FL) is a distributed machine learning framework where multiple clients collaborate to train a model without exposing their private data.
FL algorithms frequently employ a differential privacy mechanism that introduces noise into each client's model updates before sharing.
We show that an optimal balance exists between the number of local steps and communication rounds, one that maximizes the convergence performance within a given privacy budget.
arXiv Detail & Related papers (2023-04-11T10:42:11Z) - Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy [27.906539122581293]
This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model.
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern.
An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients.
arXiv Detail & Related papers (2022-12-08T16:13:35Z) - Joint Privacy Enhancement and Quantization in Federated Learning [23.36363480217293]
Federated learning (FL) is an emerging paradigm for training machine learning models using possibly private data available at edge devices.
We propose a method coined joint privacy enhancement and quantization (JoPEQ)
We show that JoPEQ simultaneously quantizes data according to a required bit-rate while holding a desired privacy level.
arXiv Detail & Related papers (2022-08-23T11:42:58Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.