Curriculum Design Helps Spiking Neural Networks to Classify Time Series
- URL: http://arxiv.org/abs/2401.10257v1
- Date: Tue, 26 Dec 2023 02:04:53 GMT
- Title: Curriculum Design Helps Spiking Neural Networks to Classify Time Series
- Authors: Chenxi Sun, Hongyan Li, Moxian Song, Derun Can, Shenda Hong
- Abstract summary: Spiking Neural Networks (SNNs) have a greater potential for modeling time series data than Artificial Neural Networks (ANNs)
In this work, enlighten by brain-inspired science, we find that, not only the structure but also the learning process should be human-like.
- Score: 16.402675046686834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) have a greater potential for modeling time
series data than Artificial Neural Networks (ANNs), due to their inherent
neuron dynamics and low energy consumption. However, it is difficult to
demonstrate their superiority in classification accuracy, because current
efforts mainly focus on designing better network structures. In this work,
enlighten by brain-inspired science, we find that, not only the structure but
also the learning process should be human-like. To achieve this, we investigate
the power of Curriculum Learning (CL) on SNNs by designing a novel method named
CSNN with two theoretically guaranteed mechanisms: The active-to-dormant
training order makes the curriculum similar to that of human learning and
suitable for spiking neurons; The value-based regional encoding makes the
neuron activity to mimic the brain memory when learning sequential data.
Experiments on multiple time series sources including simulated, sensor,
motion, and healthcare demonstrate that CL has a more positive effect on SNNs
than ANNs with about twice the accuracy change, and CSNN can increase about 3%
SNNs' accuracy by improving network sparsity, neuron firing status, anti-noise
ability, and convergence speed.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Co-learning synaptic delays, weights and adaptation in spiking neural
networks [0.0]
Spiking neural networks (SNN) distinguish themselves from artificial neural networks (ANN) because of their inherent temporal processing and spike-based computations.
We show that data processing with spiking neurons can be enhanced by co-learning the connection weights with two other biologically inspired neuronal features.
arXiv Detail & Related papers (2023-09-12T09:13:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Exploiting Noise as a Resource for Computation and Learning in Spiking
Neural Networks [32.0086664373154]
This study introduces the noisy spiking neural network (NSNN) and the noise-driven learning rule (NDL)
NSNN provides a theoretical framework that yields scalable, flexible, and reliable computation.
arXiv Detail & Related papers (2023-05-25T13:21:26Z) - Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
Classification [13.521272923545409]
Spi Neural Networks are often touted as brain-inspired learning models for the third wave of Artificial Intelligence.
This paper presents a heterogeneous spiking neural network (HRSNN) with unsupervised learning for video recognition tasks.
We show that HRSNN can achieve similar performance to state-of-the-temporal backpropagation trained supervised SNN, but with less computation.
arXiv Detail & Related papers (2022-09-22T16:34:01Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
Spiking neural networks (SNNs) have been investigated as more biologically plausible and potentially more powerful models of neural computation.
We show how a novel surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields state-of-the-art for SNNs.
arXiv Detail & Related papers (2021-03-12T10:27:29Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in rats.
Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior.
arXiv Detail & Related papers (2021-02-25T02:13:52Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
spiking neural networks (SNNs) that more closely resemble biological brain synapses have attracted attention owing to their low power consumption.
We build versatile hybrid neural networks (HNNs) that improve the concerned performance.
arXiv Detail & Related papers (2021-02-21T12:03:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.