論文の概要: Structure of Classifier Boundaries: Case Study for a Naive Bayes
Classifier
- arxiv url: http://arxiv.org/abs/2212.04382v1
- Date: Thu, 8 Dec 2022 16:23:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 14:57:16.118449
- Title: Structure of Classifier Boundaries: Case Study for a Naive Bayes
Classifier
- Title(参考訳): 分類境界の構造:ナイーブベイズ分類器のケーススタディ
- Authors: Alan F. Karr, Zac Bowen, Adam A. Porter
- Abstract要約: 境界は巨大かつ複雑であることを示す。
我々はNeighbor similarityと呼ばれる新しい不確実性尺度を作成し、その結果が隣人に対する結果の分布の点と比較する。
- 参考スコア(独自算出の注目度): 0.12891210250935145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Whether based on models, training data or a combination, classifiers place
(possibly complex) input data into one of a relatively small number of output
categories. In this paper, we study the structure of the boundary--those points
for which a neighbor is classified differently--in the context of an input
space that is a graph, so that there is a concept of neighboring inputs, The
scientific setting is a model-based naive Bayes classifier for DNA reads
produced by Next Generation Sequencers. We show that the boundary is both large
and complicated in structure. We create a new measure of uncertainty, called
Neighbor Similarity, that compares the result for a point to the distribution
of results for its neighbors. This measure not only tracks two inherent
uncertainty measures for the Bayes classifier, but also can be implemented, at
a computational cost, for classifiers without inherent measures of uncertainty.
- Abstract(参考訳): モデル、トレーニングデータ、または組み合わせに基づいて、分類器は入力データを比較的少数の出力カテゴリの1つに配置する(おそらく複雑な)。
本稿では、グラフである入力空間の文脈において、隣人が異なる分類をする境界点の構造について検討し、隣り合う入力の概念が存在するように、次世代シーケンサーが生成するdna読み取りのためのモデルベースナイーブベイズ分類器を科学的に設定する。
境界は巨大かつ複雑な構造であることを示す。
我々はNeighbor similarityと呼ばれる新しい不確実性尺度を作成し、その結果を隣人に対する結果の分布の点と比較する。
この尺度はベイズ分類器に固有の2つの不確実性測度を追跡するだけでなく、計算コストで、固有の不確実性測度を持たない分類器に実装することもできる。
関連論文リスト
- Adaptive $k$-nearest neighbor classifier based on the local estimation of the shape operator [49.87315310656657]
我々は, 局所曲率をサンプルで探索し, 周辺面積を適応的に定義する適応型$k$-nearest(kK$-NN)アルゴリズムを提案する。
多くの実世界のデータセットから、新しい$kK$-NNアルゴリズムは、確立された$k$-NN法と比較してバランスの取れた精度が優れていることが示されている。
論文 参考訳(メタデータ) (2024-09-08T13:08:45Z) - DNA: Denoised Neighborhood Aggregation for Fine-grained Category
Discovery [25.836440772705505]
本稿では,データのセマンティック構造を埋め込み空間にエンコードする自己教師型フレームワークを提案する。
我々は、クエリのk-nearest隣人を正のキーとして検索し、データ間のセマンティックな類似性を捉え、隣人からの情報を集約し、コンパクトなクラスタ表現を学ぶ。
我々の手法は、より正確な隣人(21.31%の精度改善)を検索し、最先端のモデルよりも大きなマージンで性能を向上することができる。
論文 参考訳(メタデータ) (2023-10-16T07:43:30Z) - An Upper Bound for the Distribution Overlap Index and Its Applications [18.481370450591317]
本稿では,2つの確率分布間の重なり関数に対する計算容易な上限を提案する。
提案した境界は、一級分類と領域シフト解析においてその値を示す。
私たちの研究は、重複ベースのメトリクスの応用を拡大する大きな可能性を示しています。
論文 参考訳(メタデータ) (2022-12-16T20:02:03Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
教師なしの人物再識別(ReID)は、アノテーションを使わずに人物検索のための識別的アイデンティティの特徴を学習することを目的としている。
近年の進歩はクラスタリングに基づく擬似ラベルを活用することで実現されている。
本稿では, Pseudo Label Refinement フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-30T09:39:57Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Robust-by-Design Classification via Unitary-Gradient Neural Networks [66.17379946402859]
安全クリティカルシステムにおけるニューラルネットワークの使用には、敵攻撃が存在するため、安全で堅牢なモデルが必要である。
任意の入力 x の最小逆摂動を知るか、または同値に、分類境界から x の距離は、分類ロバスト性を評価し、証明可能な予測を与える。
Unitary-Gradient Neural Networkと呼ばれる新しいネットワークアーキテクチャが紹介される。
実験結果から,提案アーキテクチャは符号付き距離を近似し,単一の推論コストでxのオンライン分類が可能であることがわかった。
論文 参考訳(メタデータ) (2022-09-09T13:34:51Z) - Smoothed Embeddings for Certified Few-Shot Learning [63.68667303948808]
我々はランダムな平滑化を数ショットの学習モデルに拡張し、入力を正規化された埋め込みにマッピングする。
この結果は、異なるデータセットの実験によって確認される。
論文 参考訳(メタデータ) (2022-02-02T18:19:04Z) - Scalable Optimal Classifiers for Adversarial Settings under Uncertainty [10.90668635921398]
本稿では,攻撃者に対して目的が不明な攻撃者がクラス-1データを生成する対角的設定において,最適な分類器を見つけることの問題点を考察する。
この低次元キャラクタリゼーションにより,ほぼほぼ最適な分類器をスケーラブルに計算する訓練手法が開発可能であることを示す。
論文 参考訳(メタデータ) (2021-06-28T13:33:53Z) - A new class of generative classifiers based on staged tree models [2.66269503676104]
分類のための生成モデルは、クラス変数と特徴の合同確率分布を使用して決定規則を構成する。
ここでは,ステージ付き木分類器と呼ばれる,コンテキスト固有の独立性を考慮した新しい生成型分類器を導入する。
タイタニックの乗客の運命を予測するための応用分析は、生成分類器の新しいクラスが与えることができる洞察を強調します。
論文 参考訳(メタデータ) (2020-12-26T19:30:35Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
逆例は機械学習モデルにおいて広く研究されている現象である。
そこで本研究では,$k$-nearest 近傍分類の逆ロバスト性を評価するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:49:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。