Implementing Neural Network-Based Equalizers in a Coherent Optical
Transmission System Using Field-Programmable Gate Arrays
- URL: http://arxiv.org/abs/2212.04703v1
- Date: Fri, 9 Dec 2022 07:28:45 GMT
- Title: Implementing Neural Network-Based Equalizers in a Coherent Optical
Transmission System Using Field-Programmable Gate Arrays
- Authors: Pedro J. Freire, Sasipim Srivallapanondh, Michael Anderson, Bernhard
Spinnler, Thomas Bex, Tobias A. Eriksson, Antonio Napoli, Wolfgang Schairer,
Nelson Costa, Michaela Blott, Sergei K. Turitsyn, Jaroslaw E. Prilepsky
- Abstract summary: We show the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems.
The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware.
- Score: 3.1543509940301946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we demonstrate the offline FPGA realization of both recurrent
and feedforward neural network (NN)-based equalizers for nonlinearity
compensation in coherent optical transmission systems. First, we present a
realization pipeline showing the conversion of the models from Python libraries
to the FPGA chip synthesis and implementation. Then, we review the main
alternatives for the hardware implementation of nonlinear activation functions.
The main results are divided into three parts: a performance comparison, an
analysis of how activation functions are implemented, and a report on the
complexity of the hardware. The performance in Q-factor is presented for the
cases of bidirectional long-short-term memory coupled with convolutional NN
(biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS digital
back-propagation (DBP) for the simulation and experiment propagation of a
single channel dual-polarization (SC-DP) 16QAM at 34 GBd along 17x70km of LEAF.
The biLSTM+CNN equalizer provides a similar result to DBP and a 1.7 dB Q-factor
gain compared with the chromatic dispersion compensation baseline in the
experimental dataset. After that, we assess the Q-factor and the impact of
hardware utilization when approximating the activation functions of NN using
Taylor series, piecewise linear, and look-up table (LUT) approximations. We
also show how to mitigate the approximation errors with extra training and
provide some insights into possible gradient problems in the LUT approximation.
Finally, to evaluate the complexity of hardware implementation to achieve 400G
throughput, fixed-point NN-based equalizers with approximated activation
functions are developed and implemented in an FPGA.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - SupeRBNN: Randomized Binary Neural Network Using Adiabatic
Superconductor Josephson Devices [44.440915387556544]
AQFP devices serve as excellent carriers for binary neural network (BNN) computations.
We propose SupeRBNN, an AQFP-based randomized BNN acceleration framework.
We show that our design achieves an energy efficiency of approximately 7.8x104 times higher than that of the ReRAM-based BNN framework.
arXiv Detail & Related papers (2023-09-21T16:14:42Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function
Combinational Logic [4.119948826527649]
Field-programmable gate array (FPGA)-based accelerators are gaining traction as a serious contender to replace graphics processing unit/central processing unit-based platforms.
This paper presents NullaNet Tiny, a framework for constructing resource and energy-efficient, ultra-low-latency FPGA-based neural network accelerators.
arXiv Detail & Related papers (2021-04-07T00:16:39Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
Single image super-resolution (SISR) system based on convolutional neural networks (CNNs) achieves fancy performance while requires huge computational costs.
We propose to use shift operation to generate the redundant features (i.e., Ghost features) of SISR models.
We show that both the non-compact and lightweight SISR models embedded in our proposed module can achieve comparable performance to that of their baselines.
arXiv Detail & Related papers (2021-01-21T10:09:47Z) - Fully-parallel Convolutional Neural Network Hardware [0.7829352305480285]
We propose a new power-and-area-efficient architecture for implementing Articial Neural Networks (ANNs) in hardware.
For the first time, a fully-parallel CNN as LENET-5 is embedded and tested in a single FPGA.
arXiv Detail & Related papers (2020-06-22T17:19:09Z) - A Learning Framework for n-bit Quantized Neural Networks toward FPGAs [20.83904734716565]
This paper proposes a novel learning framework for n-bit QNNs, whose weights are constrained to the power of two.
We also propose a novel QNN structure named n-BQ-NN, which uses shift operation to replace the multiply operation.
Experiments show that our n-BQ-NN with our SVPE can execute 2.9 times faster than with the vector processing element (VPE) in inference.
arXiv Detail & Related papers (2020-04-06T04:21:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.