Physics-based Indirect Illumination for Inverse Rendering
- URL: http://arxiv.org/abs/2212.04705v2
- Date: Fri, 1 Dec 2023 17:37:52 GMT
- Title: Physics-based Indirect Illumination for Inverse Rendering
- Authors: Youming Deng, Xueting Li, Sifei Liu, Ming-Hsuan Yang
- Abstract summary: We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images.
As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting.
- Score: 70.27534648770057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a physics-based inverse rendering method that learns the
illumination, geometry, and materials of a scene from posed multi-view RGB
images. To model the illumination of a scene, existing inverse rendering works
either completely ignore the indirect illumination or model it by coarse
approximations, leading to sub-optimal illumination, geometry, and material
prediction of the scene. In this work, we propose a physics-based illumination
model that first locates surface points through an efficient refined sphere
tracing algorithm, then explicitly traces the incoming indirect lights at each
surface point based on reflection. Then, we estimate each identified indirect
light through an efficient neural network. Moreover, we utilize the Leibniz's
integral rule to resolve non-differentiability in the proposed illumination
model caused by boundary lights inspired by differentiable irradiance in
computer graphics. As a result, the proposed differentiable illumination model
can be learned end-to-end together with geometry and materials estimation. As a
side product, our physics-based inverse rendering model also facilitates
flexible and realistic material editing as well as relighting. Extensive
experiments on synthetic and real-world datasets demonstrate that the proposed
method performs favorably against existing inverse rendering methods on novel
view synthesis and inverse rendering.
Related papers
- GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
We propose a novel method for representing a scene illuminated by a point light using a set of relightable 3D Gaussian points.
Inspired by the Blinn-Phong model, our approach decomposes the scene into ambient, diffuse, and specular components.
To facilitate the decomposition of geometric information independent of lighting conditions, we introduce a novel bilevel optimization-based meta-learning framework.
arXiv Detail & Related papers (2024-05-31T13:48:54Z) - NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images.
NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces.
We evaluate our method on both real and synthetic datasets.
arXiv Detail & Related papers (2023-11-20T06:15:46Z) - Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering [63.24476194987721]
Inverse rendering, the process of inferring scene properties from images, is a challenging inverse problem.
Most existing solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions.
We propose a novel scheme that integrates a denoising probabilistic diffusion model pre-trained on natural illumination maps into an optimization framework.
arXiv Detail & Related papers (2023-09-30T12:39:28Z) - NeILF++: Inter-Reflectable Light Fields for Geometry and Material
Estimation [36.09503501647977]
We formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF)
The proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
arXiv Detail & Related papers (2023-03-30T04:59:48Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - Modeling Indirect Illumination for Inverse Rendering [31.734819333921642]
In this paper, we propose a novel approach to efficiently recovering spatially-varying indirect illumination.
The key insight is that indirect illumination can be conveniently derived from the neural radiance field learned from input images.
Experiments on both synthetic and real data demonstrate the superior performance of our approach compared to previous work.
arXiv Detail & Related papers (2022-04-14T09:10:55Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - PhySG: Inverse Rendering with Spherical Gaussians for Physics-based
Material Editing and Relighting [60.75436852495868]
We present PhySG, an inverse rendering pipeline that reconstructs geometry, materials, and illumination from scratch from RGB input images.
We demonstrate, with both synthetic and real data, that our reconstructions not only enable rendering of novel viewpoints, but also physics-based appearance editing of materials and illumination.
arXiv Detail & Related papers (2021-04-01T17:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.