Augmenting Knowledge Transfer across Graphs
- URL: http://arxiv.org/abs/2212.04725v1
- Date: Fri, 9 Dec 2022 08:46:02 GMT
- Title: Augmenting Knowledge Transfer across Graphs
- Authors: Yuzhen Mao, Jianhui Sun, Dawei Zhou
- Abstract summary: We present TRANSNET, a generic learning framework for augmenting knowledge transfer across graphs.
In particular, we introduce a novel notion named trinity signal that can naturally formulate various graph signals at different granularity.
We show that TRANSNET outperforms all existing approaches on seven benchmark datasets by a significant margin.
- Score: 16.50013525404218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a resource-rich source graph and a resource-scarce target graph, how
can we effectively transfer knowledge across graphs and ensure a good
generalization performance? In many high-impact domains (e.g., brain networks
and molecular graphs), collecting and annotating data is prohibitively
expensive and time-consuming, which makes domain adaptation an attractive
option to alleviate the label scarcity issue. In light of this, the
state-of-the-art methods focus on deriving domain-invariant graph
representation that minimizes the domain discrepancy. However, it has recently
been shown that a small domain discrepancy loss may not always guarantee a good
generalization performance, especially in the presence of disparate graph
structures and label distribution shifts. In this paper, we present TRANSNET, a
generic learning framework for augmenting knowledge transfer across graphs. In
particular, we introduce a novel notion named trinity signal that can naturally
formulate various graph signals at different granularity (e.g., node
attributes, edges, and subgraphs). With that, we further propose a domain
unification module together with a trinity-signal mixup scheme to jointly
minimize the domain discrepancy and augment the knowledge transfer across
graphs. Finally, comprehensive empirical results show that TRANSNET outperforms
all existing approaches on seven benchmark datasets by a significant margin.
Related papers
- Rank and Align: Towards Effective Source-free Graph Domain Adaptation [16.941755478093153]
Graph neural networks (GNNs) have achieved impressive performance in graph domain adaptation.
However, extensive source graphs could be unavailable in real-world scenarios due to privacy and storage concerns.
We introduce a novel GNN-based approach called Rank and Align (RNA), which ranks graph similarities with spectral seriation for robust semantics learning.
arXiv Detail & Related papers (2024-08-22T08:00:50Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Domain Adaptive Graph Classification [0.0]
We introduce the Dual Adversarial Graph Representation Learning (DAGRL), which explore the graph topology from dual branches and mitigate domain discrepancies via dual adversarial learning.
Our approach incorporates adaptive perturbations into the dual branches, which align the source and target distribution to address domain discrepancies.
arXiv Detail & Related papers (2023-12-21T02:37:56Z) - ALEX: Towards Effective Graph Transfer Learning with Noisy Labels [11.115297917940829]
We introduce a novel technique termed Balance Alignment and Information-aware Examination (ALEX) to address the problem of graph transfer learning.
ALEX first employs singular value decomposition to generate different views with crucial structural semantics, which help provide robust node representations.
Building on this foundation, an adversarial domain discriminator is incorporated for the implicit domain alignment of complex multi-modal distributions.
arXiv Detail & Related papers (2023-09-26T04:59:49Z) - Multi-View Graph Representation Learning Beyond Homophily [2.601278669926709]
Unsupervised graph representation learning(GRL) aims to distill diverse graph information into task-agnostic embeddings without label supervision.
A novel framework, denoted as Multi-view Graph(MVGE) is proposed, and a set of key designs are identified.
arXiv Detail & Related papers (2023-04-15T08:35:49Z) - Feature propagation as self-supervision signals on graphs [0.0]
Regularized Graph Infomax (RGI) is a simple yet effective framework for node level self-supervised learning.
We show that RGI can achieve state-of-the-art performance regardless of its simplicity.
arXiv Detail & Related papers (2023-03-15T14:20:06Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.