ALEX: Towards Effective Graph Transfer Learning with Noisy Labels
- URL: http://arxiv.org/abs/2309.14673v1
- Date: Tue, 26 Sep 2023 04:59:49 GMT
- Title: ALEX: Towards Effective Graph Transfer Learning with Noisy Labels
- Authors: Jingyang Yuan, Xiao Luo, Yifang Qin, Zhengyang Mao, Wei Ju, Ming Zhang
- Abstract summary: We introduce a novel technique termed Balance Alignment and Information-aware Examination (ALEX) to address the problem of graph transfer learning.
ALEX first employs singular value decomposition to generate different views with crucial structural semantics, which help provide robust node representations.
Building on this foundation, an adversarial domain discriminator is incorporated for the implicit domain alignment of complex multi-modal distributions.
- Score: 11.115297917940829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have garnered considerable interest due to their
exceptional performance in a wide range of graph machine learning tasks.
Nevertheless, the majority of GNN-based approaches have been examined using
well-annotated benchmark datasets, leading to suboptimal performance in
real-world graph learning scenarios. To bridge this gap, the present paper
investigates the problem of graph transfer learning in the presence of label
noise, which transfers knowledge from a noisy source graph to an unlabeled
target graph. We introduce a novel technique termed Balance Alignment and
Information-aware Examination (ALEX) to address this challenge. ALEX first
employs singular value decomposition to generate different views with crucial
structural semantics, which help provide robust node representations using
graph contrastive learning. To mitigate both label shift and domain shift, we
estimate a prior distribution to build subgraphs with balanced label
distributions. Building on this foundation, an adversarial domain discriminator
is incorporated for the implicit domain alignment of complex multi-modal
distributions. Furthermore, we project node representations into a different
space, optimizing the mutual information between the projected features and
labels. Subsequently, the inconsistency of similarity structures is evaluated
to identify noisy samples with potential overfitting. Comprehensive experiments
on various benchmark datasets substantiate the outstanding superiority of the
proposed ALEX in different settings.
Related papers
- Rank and Align: Towards Effective Source-free Graph Domain Adaptation [16.941755478093153]
Graph neural networks (GNNs) have achieved impressive performance in graph domain adaptation.
However, extensive source graphs could be unavailable in real-world scenarios due to privacy and storage concerns.
We introduce a novel GNN-based approach called Rank and Align (RNA), which ranks graph similarities with spectral seriation for robust semantics learning.
arXiv Detail & Related papers (2024-08-22T08:00:50Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Learning on Graphs under Label Noise [5.909452203428086]
We develop a novel approach dubbed Consistent Graph Neural Network (CGNN) to solve the problem of learning on graphs with label noise.
Specifically, we employ graph contrastive learning as a regularization term, which promotes two views of augmented nodes to have consistent representations.
To detect noisy labels on the graph, we present a sample selection technique based on the homophily assumption.
arXiv Detail & Related papers (2023-06-14T01:38:01Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Multi-View Graph Representation Learning Beyond Homophily [2.601278669926709]
Unsupervised graph representation learning(GRL) aims to distill diverse graph information into task-agnostic embeddings without label supervision.
A novel framework, denoted as Multi-view Graph(MVGE) is proposed, and a set of key designs are identified.
arXiv Detail & Related papers (2023-04-15T08:35:49Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
We propose a novel network architecture equipped with a novel meta-learning algorithm to solve this problem.
In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy.
Our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets.
arXiv Detail & Related papers (2021-12-18T00:11:56Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGR framework exploits prior knowledge of statistical label correlations with deep neural networks.
It first builds a structured knowledge graph to correlate different labels based on statistical label co-occurrence.
Then, it introduces the label semantics to guide learning semantic-specific features.
It exploits a graph propagation network to explore graph node interactions.
arXiv Detail & Related papers (2020-09-20T15:05:29Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.