EdgeGFL: Rethinking Edge Information in Graph Feature Preference Learning
- URL: http://arxiv.org/abs/2502.02302v1
- Date: Tue, 04 Feb 2025 13:16:54 GMT
- Title: EdgeGFL: Rethinking Edge Information in Graph Feature Preference Learning
- Authors: Shengda Zhuo, Jiwang Fang, Hongguang Lin, Yin Tang, Min Chen, Changdong Wang, Shuqiang Huang,
- Abstract summary: Graph Neural Networks (GNNs) have significant advantages in handling non-Euclidean data.
The inclusion of multidimensional edge information enhances the functionality and flexibility of the GNN model.
Experiments on four real-world heterogeneous graphs demonstrate the effectiveness of theproposed model.
- Score: 12.767227925026972
- License:
- Abstract: Graph Neural Networks (GNNs) have significant advantages in handling non-Euclidean data and have been widely applied across various areas, thus receiving increasing attention in recent years. The framework of GNN models mainly includes the information propagation phase and the aggregation phase, treating nodes and edges as information entities and propagation channels, respectively. However, most existing GNN models face the challenge of disconnection between node and edge feature information, as these models typically treat the learning of edge and node features as independent tasks. To address this limitation, we aim to develop an edge-empowered graph feature preference learning framework that can capture edge embeddings to assist node embeddings. By leveraging the learned multidimensional edge feature matrix, we construct multi-channel filters to more effectively capture accurate node features, thereby obtaining the non-local structural characteristics and fine-grained high-order node features. Specifically, the inclusion of multidimensional edge information enhances the functionality and flexibility of the GNN model, enabling it to handle complex and diverse graph data more effectively. Additionally, integrating relational representation learning into the message passing framework allows graph nodes to receive more useful information, thereby facilitating node representation learning. Finally, experiments on four real-world heterogeneous graphs demonstrate the effectiveness of theproposed model.
Related papers
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
Graph Neural Networks (GNNs) traditionally employ a message-passing mechanism that resembles diffusion over undirected graphs.
Our key insight is to assign fuzzy edge directions to the edges of a graph so that features can preferentially flow in one direction between nodes.
We propose a general framework, called Continuous Edge Direction (CoED) GNN, for learning on graphs with fuzzy edges.
arXiv Detail & Related papers (2024-10-18T01:34:35Z) - Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck [5.707725771108279]
We propose an effective Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck (CGRL) for node classification.
Our method significantly outperforms existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-01T05:45:21Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
We propose a framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS)
MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network.
The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-09T21:48:36Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Edge-Featured Graph Attention Network [7.0629162428807115]
We present edge-featured graph attention networks (EGATs) to extend the use of graph neural networks to those tasks learning on graphs with both node and edge features.
By reforming the model structure and the learning process, the new models can accept node and edge features as inputs, incorporate the edge information into feature representations, and iterate both node and edge features in a parallel but mutual way.
arXiv Detail & Related papers (2021-01-19T15:08:12Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.