論文の概要: Information-Preserved Blending Method for Forward-Looking Sonar Mosaicing in Non-Ideal System Configuration
- arxiv url: http://arxiv.org/abs/2212.05216v2
- Date: Thu, 20 Mar 2025 09:33:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 19:01:05.781460
- Title: Information-Preserved Blending Method for Forward-Looking Sonar Mosaicing in Non-Ideal System Configuration
- Title(参考訳): 非初期システム構成における前向きソナーモージングのための情報保存型ブレンディング法
- Authors: Jiayi Su, Xingbin Tu, Fengzhong Qu, Yan Wei,
- Abstract要約: 疑わしい情報を含む明確なFLSモザイクは、専門家が膨大な知覚データを扱うのを助けるために要求されている。
以前の作業では、FLSが理想的なシステム構成で機能しているとしか考えていなかった。
興味のある情報を保存できる新たなFLSモザイクブレンディング法を提案する。
- 参考スコア(独自算出の注目度): 1.8186826508785554
- License:
- Abstract: Forward-Looking Sonar (FLS) has started to gain attention in the field of near-bottom close-range underwater inspection because of its high resolution and high framerate features. Although Automatic Target Recognition (ATR) algorithms have been applied tentatively for object-searching tasks, human supervision is still indispensable, especially when involving critical areas. A clear FLS mosaic containing all suspicious information is in demand to help experts deal with tremendous perception data. However, previous work only considered that FLS is working in an ideal system configuration, which assumes an appropriate sonar imaging setup and the availability of accurate positioning data. Without those promises, the intra-frame and inter-frame artifacts will appear and degrade the quality of the final mosaic by making the information of interest invisible. In this paper, we propose a novel blending method for FLS mosaicing which can preserve interested information. A Long-Short Time Sliding Window (LST-SW) is designed to rectify the local statistics of raw sonar images. The statistics are then utilized to construct a Global Variance Map (GVM). The GVM helps to emphasize the useful information contained in images in the blending phase by classifying the informative and featureless pixels, thereby enhancing the quality of final mosaic. The method is verified using data collected in the real environment. The results show that our method can preserve more details in FLS mosaics for human inspection purposes in practice.
- Abstract(参考訳): 前向きソナー(FLS)は、高解像度で高いフレームレート特性のため、ほぼボトムに近い近距離水中検査の分野で注目を集めている。
自動目標認識(ATR)アルゴリズムは、オブジェクト探索タスクに仮に適用されているが、特に臨界領域に関わる場合、人間の監督は依然として不可欠である。
疑わしい情報を含む明確なFLSモザイクは、専門家が膨大な知覚データを扱うのを助けるために要求されている。
しかし、以前の研究は、FLSが適切なソナー画像設定と正確な位置決めデータの可用性を前提とした理想的なシステム構成で作業しているとしか考えていなかった。
これらの約束がなければ、フレーム内およびフレーム間アーティファクトが出現し、関心の情報を目に見えないようにすることで、最終的なモザイクの品質を低下させます。
本稿では,FLSモザイクのための新たなブレンディング手法を提案する。
LST-SW (Long-Short Time Sliding Window) は、生ソナー画像の局所的な統計を補正するように設計されている。
統計はGVM(Global Variance Map)の構築に利用される。
GVMは、情報および特徴のない画素を分類することにより、ブレンディングフェーズにおける画像に含まれる有用な情報を強調し、最終的なモザイクの品質を向上させる。
本手法は実環境で収集したデータを用いて検証する。
以上の結果から,本手法は人体検査目的のFLSモザイクにおいて,より詳細な情報を保存できることが示唆された。
関連論文リスト
- Disentangling CLIP Features for Enhanced Localized Understanding [58.73850193789384]
提案するUnmix-CLIPは,相互特徴情報(MFI)の低減と特徴の絡み合いの改善を目的とした新しいフレームワークである。
COCO-14データセットでは、Unmix-CLIPは機能の類似性を24.9%削減している。
論文 参考訳(メタデータ) (2025-02-05T08:20:31Z) - Generalized Uncertainty-Based Evidential Fusion with Hybrid Multi-Head Attention for Weak-Supervised Temporal Action Localization [28.005080560540133]
弱教師付き時間的アクションローカライゼーション(WS-TAL)は、完全なアクションインスタンスをローカライズし、それらをビデオレベルのラベルに分類するタスクである。
動作背景のあいまいさは、主にアグリゲーションと動作内変動に起因するバックグラウンドノイズによって引き起こされるものであり、既存のWS-TAL手法にとって重要な課題である。
本稿では,ハイブリッドマルチヘッドアテンション(HMHA)モジュールと一般化された不確実性に基づく明らかな融合(GUEF)モジュールを導入し,この問題に対処する。
論文 参考訳(メタデータ) (2024-12-27T03:04:57Z) - OSMLoc: Single Image-Based Visual Localization in OpenStreetMap with Geometric and Semantic Guidances [11.085165252259042]
OSMLocは、脳にインスパイアされた単一画像の視覚的位置決め手法であり、精度、堅牢性、一般化能力を改善するための意味的および幾何学的ガイダンスを備えている。
提案したOSMLOCを検証するため,世界規模のクロスエリアとクロスコンディション(CC)のベンチマークを収集し,広範な評価を行う。
論文 参考訳(メタデータ) (2024-11-13T14:59:00Z) - $\textit{X}^2$-DFD: A framework for e${X}$plainable and e${X}$tendable Deepfake Detection [52.14468236527728]
3つのコアモジュールからなる新しいフレームワークX2$-DFDを提案する。
最初のモジュールであるモデル特徴評価(MFA)は、MLLMに固有の偽機能の検出能力を計測し、これらの機能の下位ランキングを提供する。
第2のモジュールであるStrong Feature Strengthening (SFS)は、上位機能に基づいて構築されたデータセット上でMLLMを微調整することで、検出と説明機能を強化する。
第3のモジュールであるWak Feature Supplementing (WFS)は、外部専用の機能を統合することで、低階機能における微調整MLLMの機能を改善する。
論文 参考訳(メタデータ) (2024-10-08T15:28:33Z) - PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
本稿では、データセットとネットワークフレームワークの両方の観点から、より難解な高分解能サルエントオブジェクト検出(HRSOD)について述べる。
HRSODデータセットの欠如を補うため、UHRSDと呼ばれる大規模高解像度の高分解能物体検出データセットを慎重に収集した。
すべての画像はピクセルレベルで微妙にアノテートされ、以前の低解像度のSODデータセットをはるかに上回っている。
論文 参考訳(メタデータ) (2024-08-02T09:31:21Z) - Learning Accurate and Enriched Features for Stereo Image Super-Resolution [0.0]
ステレオ画像超解像(ステレオSR)は、代替的な視点から補完情報を組み込むことで、超解像の質を高めることを目的としている。
我々は,空間的詳細を正確に保存し,豊富なコンテキスト情報を組み込むため,MSSFNet(Mixed-scale selective fusion Network)を提案する。
MSSFNetは、定量評価と定性評価の両方において最先端のアプローチよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-23T03:34:17Z) - Adaptive Multi-source Predictor for Zero-shot Video Object Segmentation [68.56443382421878]
ゼロショットビデオオブジェクトセグメンテーション(ZVOS)のための新しい適応型マルチソース予測器を提案する。
静的オブジェクト予測器では、RGBソースは、同時に深度および静注ソースに変換される。
実験の結果,提案モデルは3つのZVOSベンチマークにおいて最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-18T10:19:29Z) - AdaSfM: From Coarse Global to Fine Incremental Adaptive Structure from
Motion [48.835456049755166]
AdaSfMは粗粒度適応型SfMアプローチであり、大規模かつ挑戦的なデータセットにスケーラブルである。
当社のアプローチはまず,低コストセンサによる計測を利用して,ビューグラフの信頼性を向上させる,粗大なグローバルSfMを実現する。
本手法では,全局所再構成をグローバルSfMの座標フレームに整合させるため,しきい値適応戦略を用いる。
論文 参考訳(メタデータ) (2023-01-28T09:06:50Z) - Centralized Feature Pyramid for Object Detection [53.501796194901964]
視覚的特徴ピラミッドは、広範囲のアプリケーションにおいて、有効性と効率の両方において、その優位性を示している。
本稿では,オブジェクト検出のためのOLO特徴ピラミッドを提案する。
論文 参考訳(メタデータ) (2022-10-05T08:32:54Z) - MUNet: Motion Uncertainty-aware Semi-supervised Video Object
Segmentation [31.100954335785026]
本稿では,映像オブジェクトの半教師付きセグメンテーションのための動作不確実性認識フレームワーク(MUNet)を提案する。
動作特徴と意味的特徴を効果的に融合する動き認識型空間アテンションモジュールを提案する。
トレーニングにDAVIS17のみを使用する$76.5%の$mathcalJとmathcalF$は、低データプロトコル下でのtextitSOTAメソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-29T16:01:28Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
Inference-aware Feature Filtering (IFF)モジュールを導入し、現代の検出器と簡単に組み合わせることができる。
IFFは、畳み込み機能を強化するためにハイレベルなセマンティクスを活用することでクローズドループ最適化を行う。
IFFはCNNベースの物体検出器とプラグアンドプレイ方式で融合でき、計算コストのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2020-06-23T02:57:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。