Online Real-time Learning of Dynamical Systems from Noisy Streaming
Data: A Koopman Operator Approach
- URL: http://arxiv.org/abs/2212.05259v2
- Date: Sun, 24 Dec 2023 20:52:27 GMT
- Title: Online Real-time Learning of Dynamical Systems from Noisy Streaming
Data: A Koopman Operator Approach
- Authors: S. Sinha, Sai P. Nandanoori, David Barajas-Solano
- Abstract summary: We present a novel algorithm for online real-time learning of dynamical systems from noisy time-series data.
The proposed algorithm employs the Robust Koopman operator framework to mitigate the effect of measurement noise.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in sensing and communication facilitate obtaining
high-frequency real-time data from various physical systems like power
networks, climate systems, biological networks, etc. However, since the data
are recorded by physical sensors, it is natural that the obtained data is
corrupted by measurement noise. In this paper, we present a novel algorithm for
online real-time learning of dynamical systems from noisy time-series data,
which employs the Robust Koopman operator framework to mitigate the effect of
measurement noise. The proposed algorithm has three main advantages: a) it
allows for online real-time monitoring of a dynamical system; b) it obtains a
linear representation of the underlying dynamical system, thus enabling the
user to use linear systems theory for analysis and control of the system; c) it
is computationally fast and less intensive than the popular Extended Dynamic
Mode Decomposition (EDMD) algorithm. We illustrate the efficiency of the
proposed algorithm by applying it to identify the Van der Pol oscillator, the
IEEE 68 bus system, and a ring network of Van der Pol oscillators.
Related papers
- Neural Harmonium: An Interpretable Deep Structure for Nonlinear Dynamic
System Identification with Application to Audio Processing [4.599180419117645]
Interpretability helps us understand a model's ability to generalize and reveal its limitations.
We introduce a causal interpretable deep structure for modeling dynamic systems.
Our proposed model makes use of the harmonic analysis by modeling the system in a time-frequency domain.
arXiv Detail & Related papers (2023-10-10T21:32:15Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - Sequential Learning from Noisy Data: Data-Assimilation Meets Echo-State
Network [0.0]
A sequential training algorithm is developed for an echo-state network (ESN) by incorporating noisy observations using an ensemble Kalman filter.
The resultant Kalman-trained echo-state network (KalT-ESN) outperforms the traditionally trained ESN with least square algorithm while still being computationally cheap.
arXiv Detail & Related papers (2023-04-01T02:03:08Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers.
Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system.
We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system.
arXiv Detail & Related papers (2023-01-19T06:46:36Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems.
We design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit.
PFF efficiently learns to propagate learning signals and updates synapses with forward passes only.
arXiv Detail & Related papers (2023-01-04T05:34:48Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
We present KalmanNet, a real-time state estimator that learns from data to carry out Kalman filtering under non-linear dynamics.
We numerically demonstrate that KalmanNet overcomes nonlinearities and model mismatch, outperforming classic filtering methods.
arXiv Detail & Related papers (2021-07-21T12:26:46Z) - Inferring, Predicting, and Denoising Causal Wave Dynamics [3.9407250051441403]
The DISTributed Artificial neural Network Architecture (DISTANA) is a generative, recurrent graph convolution neural network.
We show that DISTANA is very well-suited to denoise data streams, given that re-occurring patterns are observed.
It produces stable and accurate closed-loop predictions even over hundreds of time steps.
arXiv Detail & Related papers (2020-09-19T08:33:53Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.