DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor
- URL: http://arxiv.org/abs/2310.00564v2
- Date: Fri, 10 Nov 2023 16:46:37 GMT
- Title: DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor
- Authors: Ole Richter, Chenxi Wu, Adrian M. Whatley, German K\"ostinger, Carsten
Nielsen, Ning Qiao and Giacomo Indiveri
- Abstract summary: We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
- Score: 2.9175555050594975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the remarkable progress that technology has made, the need for
processing data near the sensors at the edge has increased dramatically. The
electronic systems used in these applications must process data continuously,
in real-time, and extract relevant information using the smallest possible
energy budgets. A promising approach for implementing always-on processing of
sensory signals that supports on-demand, sparse, and edge-computing is to take
inspiration from biological nervous system. Following this approach, we present
a brain-inspired platform for prototyping real-time event-based Spiking Neural
Networks (SNNs). The system proposed supports the direct emulation of dynamic
and realistic neural processing phenomena such as short-term plasticity, NMDA
gating, AMPA diffusion, homeostasis, spike frequency adaptation,
conductance-based dendritic compartments and spike transmission delays. The
analog circuits that implement such primitives are paired with a low latency
asynchronous digital circuits for routing and mapping events. This asynchronous
infrastructure enables the definition of different network architectures, and
provides direct event-based interfaces to convert and encode data from
event-based and continuous-signal sensors. Here we describe the overall system
architecture, we characterize the mixed signal analog-digital circuits that
emulate neural dynamics, demonstrate their features with experimental
measurements, and present a low- and high-level software ecosystem that can be
used for configuring the system. The flexibility to emulate different
biologically plausible neural networks, and the chip's ability to monitor both
population and single neuron signals in real-time, allow to develop and
validate complex models of neural processing for both basic research and
edge-computing applications.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons [0.26963330643873434]
This paper introduces a spiking neural network (SNN) for a hardware-friendly physical reservoir computing (RC) on a complementary metal-oxide-semiconductor (CMOS) platform.
We demonstrate RC through short-term memory and exclusive OR tasks, and the spoken digit recognition task with an accuracy of 97.7%.
arXiv Detail & Related papers (2024-09-18T00:23:00Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Adaptive Robotic Arm Control with a Spiking Recurrent Neural Network on a Digital Accelerator [41.60361484397962]
We present an overview of the system, and a Python framework to use it on a Pynq ZU platform.
We show how the simulated accuracy is preserved with a peak performance of 3.8M events processed per second.
arXiv Detail & Related papers (2024-05-21T14:59:39Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and
Energy Extraction of Nuclear Detector Signals [3.307097167756987]
We introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning.
The proposed system achieved 60 ps time resolution and 0.40% energy resolution with online neural network inference at signal to noise ratio (SNR) of 47.4 dB.
arXiv Detail & Related papers (2022-09-02T08:52:21Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
In-memory computing mixed-signal neuromorphic architectures provide promising ultra-low-power solutions for edge-computing sensory-processing applications.
We present a set of mixed-signal analog/digital circuits that exploit the features of advanced Fully-Depleted Silicon on Insulator (FDSOI) integration processes.
arXiv Detail & Related papers (2020-06-25T09:31:29Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.