論文の概要: Generalization Through the Lens of Learning Dynamics
- arxiv url: http://arxiv.org/abs/2212.05377v1
- Date: Sun, 11 Dec 2022 00:07:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 17:22:40.753226
- Title: Generalization Through the Lens of Learning Dynamics
- Title(参考訳): 学習ダイナミクスのレンズによる一般化
- Authors: Clare Lyle
- Abstract要約: 機械学習(ML)システムは、デプロイ時に正確な予測を得るために、新しい状況に一般化することを学ぶ必要がある。
ディープニューラルネットワークの印象的な一般化性能は、理論家たちに悪影響を与えている。
この論文は、教師付き学習タスクと強化学習タスクの両方において、ディープニューラルネットワークの学習ダイナミクスを研究する。
- 参考スコア(独自算出の注目度): 11.009483845261958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A machine learning (ML) system must learn not only to match the output of a
target function on a training set, but also to generalize to novel situations
in order to yield accurate predictions at deployment. In most practical
applications, the user cannot exhaustively enumerate every possible input to
the model; strong generalization performance is therefore crucial to the
development of ML systems which are performant and reliable enough to be
deployed in the real world. While generalization is well-understood
theoretically in a number of hypothesis classes, the impressive generalization
performance of deep neural networks has stymied theoreticians. In deep
reinforcement learning (RL), our understanding of generalization is further
complicated by the conflict between generalization and stability in widely-used
RL algorithms. This thesis will provide insight into generalization by studying
the learning dynamics of deep neural networks in both supervised and
reinforcement learning tasks.
- Abstract(参考訳): 機械学習(ML)システムは、トレーニングセット上の対象関数の出力と一致するだけでなく、デプロイ時に正確な予測を得るために、新しい状況に一般化するためにも学習しなければならない。
ほとんどの実践的なアプリケーションでは、ユーザーはモデルへのあらゆる入力を徹底的に列挙することはできない。したがって、強力な一般化性能は、実世界で展開できる性能と信頼性を備えたMLシステムの開発に不可欠である。
一般化は多くの仮説クラスで理論的によく理解されているが、ディープニューラルネットワークの印象的な一般化性能は理論家を悩ませている。
深部強化学習(RL)では、広く使われているRLアルゴリズムの一般化と安定性の対立により、一般化の理解がさらに複雑になる。
この論文は、教師付き学習タスクと強化学習タスクの両方におけるディープニューラルネットワークの学習ダイナミクスを研究することによって、一般化への洞察を提供する。
関連論文リスト
- Feature contamination: Neural networks learn uncorrelated features and fail to generalize [5.642322814965062]
分散シフトの下で一般化される学習表現は、堅牢な機械学習モデルを構築する上で重要である。
ニューラルネットワークを教師ネットワークから得られる表現に明示的に適合させることさえ、学生ネットワークの一般化には不十分であることを示す。
論文 参考訳(メタデータ) (2024-06-05T15:04:27Z) - Gaussian Universality in Neural Network Dynamics with Generalized Structured Input Distributions [2.3020018305241337]
ガウス混合体としてモデル化された入力に基づいて学習したディープラーニングシステムの振る舞いを分析し,より汎用的な入力をシミュレートする。
特定の標準化スキームの下では、入力データがより複雑あるいは実世界の分布に従う場合でも、ディープラーニングモデルはガウス的な設定行動に収束する。
論文 参考訳(メタデータ) (2024-05-01T17:10:55Z) - On the Generalization Ability of Unsupervised Pretraining [53.06175754026037]
教師なし学習の最近の進歩は、教師なし事前学習、および微調整がモデル一般化を改善することを示している。
本稿では、教師なし事前学習中に得られた知識の伝達可能性に影響を及ぼす重要な要因をその後の微調整フェーズに照らす新しい理論的枠組みを提案する。
この結果は教師なし事前学習と微調整のパラダイムの理解を深め、より効果的な事前学習アルゴリズムの設計に光を当てることができる。
論文 参考訳(メタデータ) (2024-03-11T16:23:42Z) - Machine Learning vs Deep Learning: The Generalization Problem [0.0]
本研究では,従来の機械学習(ML)モデルとディープラーニング(DL)アルゴリズムの比較能力について,外挿の観点から検討した。
本稿では,MLモデルとDLモデルの両方が指数関数で学習され,学習領域外の値でテストされる経験的分析を提案する。
その結果,ディープラーニングモデルには,学習範囲を超えて一般化する固有の能力があることが示唆された。
論文 参考訳(メタデータ) (2024-03-03T21:42:55Z) - A General Framework for Learning from Weak Supervision [93.89870459388185]
本稿では、新しいアルゴリズムを用いて、弱監督(GLWS)から学習するための一般的な枠組みを紹介する。
GLWSの中心は期待最大化(EM)の定式化であり、様々な弱い監督源を順応的に収容している。
また,EM計算要求を大幅に単純化する高度なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-02T21:48:50Z) - Neural Networks and the Chomsky Hierarchy [27.470857324448136]
チョムスキー理論の知見が実際にニューラルネットワークの一般化の限界を予測できるかどうかを考察する。
膨大なデータとトレーニング時間さえも、非自明な一般化に繋がらない負の結果を示す。
この結果から,RNNとTransformerは非正規タスクの一般化に失敗し,構造化メモリで拡張されたネットワークのみがコンテキストレス・コンテキスト依存タスクの一般化に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-05T15:06:11Z) - Understanding Robust Generalization in Learning Regular Languages [85.95124524975202]
我々は、リカレントニューラルネットワークを用いて正規言語を学習する文脈における堅牢な一般化について研究する。
この問題に対処するための構成戦略を提案する。
構成戦略がエンド・ツー・エンド戦略よりもはるかに優れていることを理論的に証明する。
論文 参考訳(メタデータ) (2022-02-20T02:50:09Z) - Deep Active Learning by Leveraging Training Dynamics [57.95155565319465]
本稿では,学習力学を最大化するためにサンプルを選択する理論駆動型深層能動学習法(Dynamical)を提案する。
動的学習は、他のベースラインを一貫して上回るだけでなく、大規模なディープラーニングモデルでもうまくスケール可能であることを示す。
論文 参考訳(メタデータ) (2021-10-16T16:51:05Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
本稿では,RLエージェントのより優れた一般化を実現するために,情報理論正則化目標とアニーリングに基づく最適化手法を提案する。
迷路ナビゲーションからロボットタスクまで、さまざまな領域において、我々のアプローチの極端な一般化の利点を実証する。
この研究は、タスク解決のために冗長な情報を徐々に取り除き、RLの一般化を改善するための原則化された方法を提供する。
論文 参考訳(メタデータ) (2020-08-03T02:24:20Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。