論文の概要: MoDem: Accelerating Visual Model-Based Reinforcement Learning with
Demonstrations
- arxiv url: http://arxiv.org/abs/2212.05698v1
- Date: Mon, 12 Dec 2022 04:28:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 15:44:00.726758
- Title: MoDem: Accelerating Visual Model-Based Reinforcement Learning with
Demonstrations
- Title(参考訳): MoDem: デモによる視覚モデルに基づく強化学習の促進
- Authors: Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar,
Aravind Rajeswaran
- Abstract要約: サンプルの低さは、現実世界のアプリケーションに深層強化学習(RL)アルゴリズムをデプロイする上で、依然として最大の課題である。
モデルベースRLのサンプル効率を劇的に向上させることができるのは,ごく少数のデモンストレーションのみである。
本研究では,3つの複雑なビジュオモータ制御領域を実験的に検討し,スパース報酬タスクの完了に150%-250%成功していることを確認した。
- 参考スコア(独自算出の注目度): 36.44386146801296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Poor sample efficiency continues to be the primary challenge for deployment
of deep Reinforcement Learning (RL) algorithms for real-world applications, and
in particular for visuo-motor control. Model-based RL has the potential to be
highly sample efficient by concurrently learning a world model and using
synthetic rollouts for planning and policy improvement. However, in practice,
sample-efficient learning with model-based RL is bottlenecked by the
exploration challenge. In this work, we find that leveraging just a handful of
demonstrations can dramatically improve the sample-efficiency of model-based
RL. Simply appending demonstrations to the interaction dataset, however, does
not suffice. We identify key ingredients for leveraging demonstrations in model
learning -- policy pretraining, targeted exploration, and oversampling of
demonstration data -- which forms the three phases of our model-based RL
framework. We empirically study three complex visuo-motor control domains and
find that our method is 150%-250% more successful in completing sparse reward
tasks compared to prior approaches in the low data regime (100K interaction
steps, 5 demonstrations). Code and videos are available at:
https://nicklashansen.github.io/modemrl
- Abstract(参考訳): サンプル効率の低さは、現実世界のアプリケーション、特にビジュオモーター制御のためのディープ強化学習(RL)アルゴリズムの展開において、引き続き主要な課題である。
モデルベースのrlは、世界モデルを同時に学習し、計画と政策改善に合成ロールアウトを使用することで、非常にサンプル効率が良い可能性がある。
しかし、実際には、モデルに基づくRLを用いたサンプル効率学習は探索課題によってボトルネックとなる。
本研究では,モデルベースRLのサンプル効率を劇的に向上させることができることを示す。
ただし、インタラクションデータセットにデモを追加するだけでは十分ではありません。
モデルベースのrlフレームワークの3つのフェーズを形成する,モデル学習 – ポリシ事前トレーニング,ターゲット探索,デモデータのオーバーサンプリング – における,デモンストレーションを活用する上で重要な要素を特定します。
我々は,3つの複雑なビジュオモータ制御領域を実験的に研究し,この手法が低データ方式(100Kのインタラクションステップ,5つのデモ)の従来のアプローチと比較して,スパース報酬タスクの完了に150%-250%成功していることを確認した。
コードとビデオは、https://nicklashansen.github.io/modemrl.comで入手できる。
関連論文リスト
- Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
我々は、報酬モデルと政策モデルを同時に構築するために、逆強化学習(IRL)技術を活用することを提案する。
提案アルゴリズムはIRL問題の定常解に収束することを示す。
その結果,アライメントプロセス全体を通じて報酬学習を活用することは有益であることが示唆された。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - HarmonyDream: Task Harmonization Inside World Models [93.07314830304193]
モデルベース強化学習(MBRL)は、サンプル効率の学習を約束する。
本稿では,タスク調和性を維持するために損失係数を自動的に調整する,シンプルで効果的なアプローチであるHarmonyDreamを提案する。
論文 参考訳(メタデータ) (2023-09-30T11:38:13Z) - Simplified Temporal Consistency Reinforcement Learning [19.814047499837084]
本稿では,潜時整合性によって訓練された潜時力学モデルに依存する単純な表現学習手法が,高性能なRLには十分であることを示す。
提案手法は,モデルフリー手法を大きなマージンで上回り,モデルベース手法のサンプル効率を2.4倍高速にトレーニングしながら比較する。
論文 参考訳(メタデータ) (2023-06-15T19:37:43Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
RLエージェントの訓練と並行して動作モデルを学ぶことで,実システムからサンプリングしたデータ量を大幅に削減できることを示す。
また、RLトレーニングのバイアスを避けるために、モデルを反復的に更新することが重要であることも示している。
論文 参考訳(メタデータ) (2023-02-14T16:14:39Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
自己整合性を維持しつつ高いリターンを達成するために,潜在空間モデルとポリシーを協調的に最適化する単一目的を提案する。
得られたアルゴリズムは, モデルベースおよびモデルフリーRL手法のサンプル効率に適合するか, 改善することを示した。
論文 参考訳(メタデータ) (2022-09-18T03:51:58Z) - PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided
Exploration [15.173628100049129]
本研究では,カーネル化レギュレータ(KNR)と線形マルコフ決定過程(MDP)のモデルベースアルゴリズムについて検討する。
両方のモデルに対して、我々のアルゴリズムはサンプルの複雑さを保証し、プランニングオラクルへのアクセスのみを使用する。
また,提案手法は報酬のない探索を効率的に行うことができる。
論文 参考訳(メタデータ) (2021-07-15T15:49:30Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Domain Knowledge Integration By Gradient Matching For Sample-Efficient
Reinforcement Learning [0.0]
本研究では,モデルフリー学習者を支援するために,ダイナミックスからの目標勾配情報を活用することで,サンプル効率を向上させる勾配マッチングアルゴリズムを提案する。
本稿では,モデルに基づく学習者からの勾配情報と,抽象的な低次元空間におけるモデル自由成分とをマッチングする手法を提案する。
論文 参考訳(メタデータ) (2020-05-28T05:02:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。