Finger-NestNet: Interpretable Fingerphoto Verification on Smartphone
using Deep Nested Residual Network
- URL: http://arxiv.org/abs/2212.05884v1
- Date: Fri, 9 Dec 2022 17:15:35 GMT
- Title: Finger-NestNet: Interpretable Fingerphoto Verification on Smartphone
using Deep Nested Residual Network
- Authors: Raghavendra Ramachandra and Hailin Li
- Abstract summary: This work presents a novel algorithm for fingerphoto verification using a nested residual block: Finger-NestNet.
The proposed Finger-NestNet architecture is designed with three consecutive convolution blocks followed by a series of nested residual blocks to achieve reliable fingerphoto verification.
- Score: 6.668147787950981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fingerphoto images captured using a smartphone are successfully used to
verify the individuals that have enabled several applications. This work
presents a novel algorithm for fingerphoto verification using a nested residual
block: Finger-NestNet. The proposed Finger-NestNet architecture is designed
with three consecutive convolution blocks followed by a series of nested
residual blocks to achieve reliable fingerphoto verification. This paper also
presents the interpretability of the proposed method using four different
visualization techniques that can shed light on the critical regions in the
fingerphoto biometrics that can contribute to the reliable verification
performance of the proposed method. Extensive experiments are performed on the
fingerphoto dataset comprised of 196 unique fingers collected from 52 unique
data subjects using an iPhone6S. Experimental results indicate the improved
verification of the proposed method compared to six different existing methods
with EER = 1.15%.
Related papers
- Fingervein Verification using Convolutional Multi-Head Attention Network [3.700129710233692]
We introduce a novel fingervein verification technique using a convolutional multihead attention network called VeinAtnNet.
The proposed VeinAtnNet is designed to achieve light weight with a smaller number of learnable parameters while extracting discriminant information from both normal and enhanced fingervein images.
arXiv Detail & Related papers (2023-10-25T17:38:16Z) - Web Photo Source Identification based on Neural Enhanced Camera
Fingerprint [9.606477062236499]
Source camera identification of web photos aims to establish a reliable linkage from the captured images to their source cameras.
This paper presents an innovative and practical source identification framework that employs neural-network enhanced sensor pattern noise.
By incorporating metric learning and frequency consistency into the deep network design, our proposed fingerprint extraction algorithm achieves state-of-the-art performance on modern smartphone photos.
arXiv Detail & Related papers (2023-02-18T04:14:45Z) - AFR-Net: Attention-Driven Fingerprint Recognition Network [47.87570819350573]
We improve initial studies on the use of vision transformers (ViT) for biometric recognition, including fingerprint recognition.
We propose a realignment strategy using local embeddings extracted from intermediate feature maps within the networks to refine the global embeddings in low certainty situations.
This strategy can be applied as a wrapper to any existing deep learning network (including attention-based, CNN-based, or both) to boost its performance.
arXiv Detail & Related papers (2022-11-25T05:10:39Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
Single image super-resolution techniques are emerging, especially with the use of convolutional neural networks (CNNs)
In this work, the authors explore single image super-resolution using CNNs for iris recognition.
They validate their approach on a database of 1.872 near infrared iris images and on a mobile phone image database.
arXiv Detail & Related papers (2022-10-24T11:19:18Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system.
In this work, we review existing approaches for fingerprint image-quality estimation.
We have also tested a selection of fingerprint image-quality estimation algorithms.
arXiv Detail & Related papers (2021-11-14T19:53:12Z) - A high performance fingerprint liveness detection method based on
quality related features [66.41574316136379]
The system is tested on a highly challenging database comprising over 10,500 real and fake images.
The proposed solution proves to be robust to the multi-scenario dataset, and presents an overall rate of 90% correctly classified samples.
arXiv Detail & Related papers (2021-11-02T21:09:39Z) - A Contactless Fingerprint Recognition System [5.565364597145569]
We propose an approach for developing a contactless fingerprint recognition system that captures finger photo from a distance.
The captured finger photos are then processed further to obtain global and local (minutiae-based) features.
The proposed system is developed using the Nvidia Jetson Nano development kit, which allows us to perform contactless fingerprint recognition in real-time.
arXiv Detail & Related papers (2021-08-20T08:21:55Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUG is a rule-based, proximity-based method of fingerprint augmentation.
The best performing positioning method on this dataset is improved by 40% in terms of median error and 6% in terms of mean error, with the use of the augmented dataset.
arXiv Detail & Related papers (2021-02-04T15:59:30Z) - Fingerprint Feature Extraction by Combining Texture, Minutiae, and
Frequency Spectrum Using Multi-Task CNN [0.14337588659482517]
We propose a novel CNN-based method for extracting fingerprint features from texture, minutiae, and frequency spectrum.
We show that the proposed method exhibits the efficient performance on fingerprint verification compared with a commercial fingerprint matching software and the conventional method.
arXiv Detail & Related papers (2020-08-27T05:15:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.