A Contactless Fingerprint Recognition System
- URL: http://arxiv.org/abs/2108.09048v1
- Date: Fri, 20 Aug 2021 08:21:55 GMT
- Title: A Contactless Fingerprint Recognition System
- Authors: Aman Attrish, Nagasai Bharat, Vijay Anand, and Vivek Kanhangad
- Abstract summary: We propose an approach for developing a contactless fingerprint recognition system that captures finger photo from a distance.
The captured finger photos are then processed further to obtain global and local (minutiae-based) features.
The proposed system is developed using the Nvidia Jetson Nano development kit, which allows us to perform contactless fingerprint recognition in real-time.
- Score: 5.565364597145569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fingerprints are one of the most widely explored biometric traits.
Specifically, contact-based fingerprint recognition systems reign supreme due
to their robustness, portability and the extensive research work done in the
field. However, these systems suffer from issues such as hygiene, sensor
degradation due to constant physical contact, and latent fingerprint threats.
In this paper, we propose an approach for developing a contactless fingerprint
recognition system that captures finger photo from a distance using an image
sensor in a suitable environment. The captured finger photos are then processed
further to obtain global and local (minutiae-based) features. Specifically, a
Siamese convolutional neural network (CNN) is designed to extract global
features from a given finger photo. The proposed system computes matching
scores from CNN-based features and minutiae-based features. Finally, the two
scores are fused to obtain the final matching score between the probe and
reference fingerprint templates. Most importantly, the proposed system is
developed using the Nvidia Jetson Nano development kit, which allows us to
perform contactless fingerprint recognition in real-time with minimum latency
and acceptable matching accuracy. The performance of the proposed system is
evaluated on an in-house IITI contactless fingerprint dataset (IITI-CFD)
containing 105train and 100 test subjects. The proposed system achieves an
equal-error-rate of 2.19% on IITI-CFD.
Related papers
- Digitizing Touch with an Artificial Multimodal Fingertip [51.7029315337739]
Humans and robots both benefit from using touch to perceive and interact with the surrounding environment.
Here, we describe several conceptual and technological innovations to improve the digitization of touch.
These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities.
arXiv Detail & Related papers (2024-11-04T18:38:50Z) - Deep Learning-Based Approaches for Contactless Fingerprints Segmentation
and Extraction [1.2441902898414798]
We develop a deep learning-based segmentation tool for contactless fingerprint localization and segmentation.
In our evaluation, our segmentation method demonstrated an average mean absolute error (MAE) of 30 pixels, an error in angle prediction (EAP) of 5.92 degrees, and a labeling accuracy of 97.46%.
arXiv Detail & Related papers (2023-11-26T01:56:10Z) - Presentation Attack Detection with Advanced CNN Models for
Noncontact-based Fingerprint Systems [5.022332693793425]
We develop a Presentation attack detection (PAD) dataset of more than 7500 four-finger images.
PAD accuracy of Attack presentation classification error rate (APCER) 0.14% and Bonafide presentation classification error rate (BPCER) 0.18%.
arXiv Detail & Related papers (2023-03-09T18:01:10Z) - AFR-Net: Attention-Driven Fingerprint Recognition Network [47.87570819350573]
We improve initial studies on the use of vision transformers (ViT) for biometric recognition, including fingerprint recognition.
We propose a realignment strategy using local embeddings extracted from intermediate feature maps within the networks to refine the global embeddings in low certainty situations.
This strategy can be applied as a wrapper to any existing deep learning network (including attention-based, CNN-based, or both) to boost its performance.
arXiv Detail & Related papers (2022-11-25T05:10:39Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
This work carries out a comparative analysis of unimodal and multimodal behavioral biometric traits.
Experiments are performed over HuMIdb, one of the largest and most comprehensive freely available mobile user interaction databases.
In our experiments, the most discriminative background sensor is the magnetometer, whereas among touch tasks the best results are achieved with keystroke.
arXiv Detail & Related papers (2022-03-14T17:05:59Z) - Synthesis and Reconstruction of Fingerprints using Generative
Adversarial Networks [6.700873164609009]
We propose a novel fingerprint synthesis and reconstruction framework based on the StyleGan2 architecture.
We also derive a computational approach to modify the attributes of the generated fingerprint while preserving their identity.
The proposed framework was experimentally shown to outperform contemporary state-of-the-art approaches for both fingerprint synthesis and reconstruction.
arXiv Detail & Related papers (2022-01-17T00:18:00Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z) - SynFi: Automatic Synthetic Fingerprint Generation [23.334625222079634]
We introduce a new approach to automatically generate high-fidelity synthetic fingerprints at scale.
We show that our methodology is the first to generate fingerprints that are computationally indistinguishable from real ones.
arXiv Detail & Related papers (2020-02-16T07:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.