NETpred: Network-based modeling and prediction of multiple connected
market indices
- URL: http://arxiv.org/abs/2212.05916v1
- Date: Fri, 2 Dec 2022 17:23:09 GMT
- Title: NETpred: Network-based modeling and prediction of multiple connected
market indices
- Authors: Alireza Jafari and Saman Haratizadeh
- Abstract summary: We introduce a framework called NETpred that generates a novel graph representing multiple related indices and their stocks.
It then thoroughly selects a diverse set of representative nodes that cover different parts of the state space and whose price movements are accurately predictable.
The resulting model is then used to predict the stock labels which are finally aggregated to infer the labels for all the index nodes in the graph.
- Score: 8.122270502556372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Market prediction plays a major role in supporting financial decisions. An
emerging approach in this domain is to use graphical modeling and analysis to
for prediction of next market index fluctuations. One important question in
this domain is how to construct an appropriate graphical model of the data that
can be effectively used by a semi-supervised GNN to predict index fluctuations.
In this paper, we introduce a framework called NETpred that generates a novel
heterogeneous graph representing multiple related indices and their stocks by
using several stock-stock and stock-index relation measures. It then thoroughly
selects a diverse set of representative nodes that cover different parts of the
state space and whose price movements are accurately predictable. By assigning
initial predicted labels to such a set of nodes, NETpred makes sure that the
subsequent GCN model can be successfully trained using a semi-supervised
learning process. The resulting model is then used to predict the stock labels
which are finally aggregated to infer the labels for all the index nodes in the
graph. Our comprehensive set of experiments shows that NETpred improves the
performance of the state-of-the-art baselines by 3%-5% in terms of F-score
measure on different well-known data sets.
Related papers
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - RoCP-GNN: Robust Conformal Prediction for Graph Neural Networks in Node-Classification [0.0]
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting outcomes in graph-structured data.
One way to address this issue is by providing prediction sets that contain the true label with a predefined probability margin.
We propose a novel approach termed Robust Conformal Prediction for GNNs (RoCP-GNN)
Our approach robustly predicts outcomes with any predictive GNN model while quantifying the uncertainty in predictions within the realm of graph-based semi-supervised learning (SSL)
arXiv Detail & Related papers (2024-08-25T12:51:19Z) - Deep Generative Models for Subgraph Prediction [10.56335881963895]
This paper introduces subgraph queries as a new task for deep graph learning.
Subgraph queries jointly predict the components of a target subgraph based on evidence that is represented by an observed subgraph.
We utilize a probabilistic deep Graph Generative Model to answer subgraph queries.
arXiv Detail & Related papers (2024-08-07T19:24:02Z) - GraphCNNpred: A stock market indices prediction using a Graph based deep learning system [0.0]
We give a graph neural network based convolutional neural network (CNN) model, that can be applied on diverse source of data, in the attempt to extract features to predict the trends of indices of textS&textP 500, NASDAQ, DJI, NYSE, and RUSSEL.
Experiments show that the associated models improve the performance of prediction in all indices over the baseline algorithms by about $4% text to 15%$, in terms of F-measure.
arXiv Detail & Related papers (2024-07-04T09:14:24Z) - Endowing Pre-trained Graph Models with Provable Fairness [49.8431177748876]
We propose a novel adapter-tuning framework that endows pre-trained graph models with provable fairness (called GraphPAR)
Specifically, we design a sensitive semantic augmenter on node representations, to extend the node representations with different sensitive attribute semantics for each node.
With GraphPAR, we quantify whether the fairness of each node is provable, i.e., predictions are always fair within a certain range of sensitive attribute semantics.
arXiv Detail & Related papers (2024-02-19T14:16:08Z) - Text Representation Enrichment Utilizing Graph based Approaches: Stock
Market Technical Analysis Case Study [0.0]
We propose a transductive hybrid approach composed of an unsupervised node representation learning model followed by a node classification/edge prediction model.
The proposed model is developed to classify stock market technical analysis reports, which to our knowledge is the first work in this domain.
arXiv Detail & Related papers (2022-11-29T11:26:08Z) - GCNET: graph-based prediction of stock price movement using graph
convolutional network [8.122270502556372]
GCNET is a general prediction framework that can be applied for the prediction of the price fluctuations for any set of interacting stocks based on their historical data.
Our experiments and evaluations on sets of stocks from S&P500 and NASDAQ show that GCNET significantly improves the performance of SOTA in terms of accuracy and MCC measures.
arXiv Detail & Related papers (2022-02-19T16:13:44Z) - Graph Classification by Mixture of Diverse Experts [67.33716357951235]
We present GraphDIVE, a framework leveraging mixture of diverse experts for imbalanced graph classification.
With a divide-and-conquer principle, GraphDIVE employs a gating network to partition an imbalanced graph dataset into several subsets.
Experiments on real-world imbalanced graph datasets demonstrate the effectiveness of GraphDIVE.
arXiv Detail & Related papers (2021-03-29T14:03:03Z) - Benchmarking Graph Neural Networks on Link Prediction [80.2049358846658]
We benchmark several existing graph neural network (GNN) models on different datasets for link predictions.
Our experiments show these GNN architectures perform similarly on various benchmarks for link prediction tasks.
arXiv Detail & Related papers (2021-02-24T20:57:16Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - ProphetNet: Predicting Future N-gram for Sequence-to-Sequence
Pre-training [85.35910219651572]
We present a new sequence-to-sequence pre-training model called ProphetNet.
It introduces a novel self-supervised objective named future n-gram prediction.
We conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks.
arXiv Detail & Related papers (2020-01-13T05:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.