論文の概要: Graph algorithms for predicting subcellular localization at the pathway
level
- arxiv url: http://arxiv.org/abs/2212.05991v1
- Date: Mon, 12 Dec 2022 15:49:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 18:25:58.359444
- Title: Graph algorithms for predicting subcellular localization at the pathway
level
- Title(参考訳): 経路レベルでの細胞内局在予測のためのグラフアルゴリズム
- Authors: Chris S. Magnano, Anthony Gitter
- Abstract要約: 生物経路における全ての相互作用の局所化をエッジラベルタスクとして予測するグラフアルゴリズムを開発した。
また, ウイルス感染によるヒト線維芽細胞の局在を予測し, 生物学的経路を構築するケーススタディも実施した。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Protein subcellular localization is an important factor in normal cellular
processes and disease. While many protein localization resources treat it as
static, protein localization is dynamic and heavily influenced by biological
context. Biological pathways are graphs that represent a specific biological
context and can be inferred from large-scale data. We develop graph algorithms
to predict the localization of all interactions in a biological pathway as an
edge-labeling task. We compare a variety of models including graph neural
networks, probabilistic graphical models, and discriminative classifiers for
predicting localization annotations from curated pathway databases. We also
perform a case study where we construct biological pathways and predict
localizations of human fibroblasts undergoing viral infection. Pathway
localization prediction is a promising approach for integrating publicly
available localization data into the analysis of large-scale biological data.
- Abstract(参考訳): タンパク質の細胞内局在は正常な細胞プロセスや疾患において重要な因子である。
多くのタンパク質の局在化資源は静的として扱うが、タンパク質の局在化は生物学的文脈に強く影響される。
生物学的経路は、特定の生物学的文脈を表すグラフであり、大規模データから推測できる。
生物経路における全ての相互作用の局所化をエッジラベルタスクとして予測するグラフアルゴリズムを開発した。
我々は,グラフニューラルネットワーク,確率的グラフィカルモデル,識別分類器など様々なモデルを比較し,キュレーションされた経路データベースからの局所化アノテーションを予測する。
また, ウイルス感染によるヒト線維芽細胞の局在を予測し, 生物学的経路を構築するケーススタディも実施した。
経路ローカライゼーション予測は,大規模生物学的データの解析に公開可能なローカライゼーションデータを統合するための有望なアプローチである。
関連論文リスト
- Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
哺乳類網膜で観察される生体受容野を,深部核が効果的に複製していることを示す証拠を提示する。
生体受容の分野からインスピレーションを得る手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T18:06:22Z) - A Review of Link Prediction Applications in Network Biology [2.7624021966289605]
リンク予測(LP)手法は、生物学的ネットワーク内での欠落や予知の関連を推測するのに役立つ。
静的, 動的生物学的ネットワークに適用した, 局所的, 集中的, 埋め込み型LPアプローチの属性を系統的に識別する。
今後のLPモデルから期待される本質的な特徴を探求し, 生物学的システムを管理する複雑な相互作用の理解を深めるべく, レビューを締めくくった。
論文 参考訳(メタデータ) (2023-12-03T04:23:51Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - A novel framework employing deep multi-attention channels network for
the autonomous detection of metastasizing cells through fluorescence
microscopy [0.20999222360659603]
正常細胞と転移細胞を区別できる計算フレームワークを開発した。
この方法は、正常で転移する単細胞においてアクチンとビメンチンフィラメントの空間的構造を示す蛍光顕微鏡画像に依存する。
論文 参考訳(メタデータ) (2023-09-02T11:20:10Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
現在の生物学的ネットワークは、ノイズ、スパース、不完全であり、そのような相互作用の実験的同定には時間と費用がかかる。
ディープグラフニューラルネットワークは、グラフ構造データモデリングの有効性を示し、バイオメディカル相互作用予測において優れた性能を達成した。
提案手法により,グラフ畳み込みネットワークは,その深度を動的に適応し,対話数の増加に対応することができる。
論文 参考訳(メタデータ) (2022-11-22T20:44:28Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Using ontology embeddings for structural inductive bias in gene
expression data analysis [6.587739898387445]
がん患者の遺伝子発現レベルに基づいて、診断、生存分析、治療計画を改善することができる。
本稿では,遺伝子発現データから患者の分類作業を行う機械学習システムに,遺伝子に関する生物学的知識を取り入れることを提案する。
論文 参考訳(メタデータ) (2020-11-22T12:13:29Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。