論文の概要: Using ontology embeddings for structural inductive bias in gene
expression data analysis
- arxiv url: http://arxiv.org/abs/2011.10998v1
- Date: Sun, 22 Nov 2020 12:13:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 12:17:53.095659
- Title: Using ontology embeddings for structural inductive bias in gene
expression data analysis
- Title(参考訳): オントロジー埋め込みを用いた遺伝子発現データ解析における構造誘導バイアス
- Authors: Maja Tr\k{e}bacz, Zohreh Shams, Mateja Jamnik, Paul Scherer, Nikola
Simidjievski, Helena Andres Terre, Pietro Li\`o
- Abstract要約: がん患者の遺伝子発現レベルに基づいて、診断、生存分析、治療計画を改善することができる。
本稿では,遺伝子発現データから患者の分類作業を行う機械学習システムに,遺伝子に関する生物学的知識を取り入れることを提案する。
- 参考スコア(独自算出の注目度): 6.587739898387445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stratifying cancer patients based on their gene expression levels allows
improving diagnosis, survival analysis and treatment planning. However, such
data is extremely highly dimensional as it contains expression values for over
20000 genes per patient, and the number of samples in the datasets is low. To
deal with such settings, we propose to incorporate prior biological knowledge
about genes from ontologies into the machine learning system for the task of
patient classification given their gene expression data. We use ontology
embeddings that capture the semantic similarities between the genes to direct a
Graph Convolutional Network, and therefore sparsify the network connections. We
show this approach provides an advantage for predicting clinical targets from
high-dimensional low-sample data.
- Abstract(参考訳): がん患者の遺伝子発現レベルに基づいて、診断、生存分析、治療計画を改善することができる。
しかし、このデータは患者1人あたり20000以上の遺伝子の発現値を含み、データセット内のサンプル数が少ないため、非常に高次元である。
そこで本研究では, オントロジからの遺伝子に関する事前生物学的知識を機械学習システムに組み込んで, 遺伝子発現データから患者の分類作業を行う。
オントロジー埋め込みを用いて、遺伝子間のセマンティックな類似性を捉え、グラフ畳み込みネットワークを誘導し、ネットワーク接続を分散させる。
このアプローチは,高次元の低サンプルデータから臨床目標を予測するためのアドバンテージを提供する。
関連論文リスト
- Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - GENER: A Parallel Layer Deep Learning Network To Detect Gene-Gene
Interactions From Gene Expression Data [0.7660368798066375]
本稿では,遺伝子発現データを用いた遺伝子関係の同定専用に設計された並列層深層学習ネットワークを提案する。
本モデルでは,BioGRIDとDREAM5の組み合わせによる平均AUROCスコア0.834を達成し,遺伝子間相互作用を予測する競合手法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-05T15:45:53Z) - An end-to-end framework for gene expression classification by
integrating a background knowledge graph: application to cancer prognosis
prediction [1.5484595752241122]
我々は、一次データの分類モデルを構築するために、二次データを扱うエンドツーエンドフレームワークを提案した。
我々はこの枠組みを,遺伝子発現データと生物学的ネットワークを用いた癌予後予測に応用した。
論文 参考訳(メタデータ) (2023-06-29T11:20:47Z) - Breast Cancer Histopathology Image based Gene Expression Prediction
using Spatial Transcriptomics data and Deep Learning [3.583756449759971]
本稿では,病理組織像から遺伝子発現を予測するためのディープラーニングフレームワークBrST-Netを提案する。
我々は,250遺伝子の予測に事前訓練した重みを使わずに10種類の最先端ディープラーニングモデルを訓練し,評価した。
本手法は,0.50以上の正相関係数を持つ24遺伝子を含む237遺伝子を同定し,過去の研究より優れていた。
論文 参考訳(メタデータ) (2023-03-17T14:03:40Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。