論文の概要: Agnostic Learning for Packing Machine Stoppage Prediction in Smart
Factories
- arxiv url: http://arxiv.org/abs/2212.06288v1
- Date: Mon, 12 Dec 2022 23:45:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 15:51:18.517340
- Title: Agnostic Learning for Packing Machine Stoppage Prediction in Smart
Factories
- Title(参考訳): スマートファクトリにおける機械停止予測の非依存学習
- Authors: Gabriel Filios, Ioannis Katsidimas, Sotiris Nikoletseas, Stefanos H.
Panagiotou, Theofanis P. Raptis
- Abstract要約: サイバー物理コンバージェンス(サイバー物理コンバージェンス)は、産業界に新たなビジネスチャンスを開こうとしている。
サイバーと物理世界の深い統合の必要性は、新しいシステムとネットワークエンジニアリングのアプローチを統合するための豊富なビジネスアジェンダを確立する。
このデータ豊かでサイバー物理学的でスマートな工場環境から生まれた、最も実りある研究と実践の分野の1つは、データ駆動のプロセス監視分野である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The cyber-physical convergence is opening up new business opportunities for
industrial operators. The need for deep integration of the cyber and the
physical worlds establishes a rich business agenda towards consolidating new
system and network engineering approaches. This revolution would not be
possible without the rich and heterogeneous sources of data, as well as the
ability of their intelligent exploitation, mainly due to the fact that data
will serve as a fundamental resource to promote Industry 4.0. One of the most
fruitful research and practice areas emerging from this data-rich,
cyber-physical, smart factory environment is the data-driven process monitoring
field, which applies machine learning methodologies to enable predictive
maintenance applications. In this paper, we examine popular time series
forecasting techniques as well as supervised machine learning algorithms in the
applied context of Industry 4.0, by transforming and preprocessing the
historical industrial dataset of a packing machine's operational state
recordings (real data coming from the production line of a manufacturing plant
from the food and beverage domain). In our methodology, we use only a single
signal concerning the machine's operational status to make our predictions,
without considering other operational variables or fault and warning signals,
hence its characterization as ``agnostic''. In this respect, the results
demonstrate that the adopted methods achieve a quite promising performance on
three targeted use cases.
- Abstract(参考訳): サイバー物理的収束は、産業運営者にとって新たなビジネスチャンスを開いている。
サイバーと物理世界の深い統合の必要性は、新しいシステムとネットワークエンジニアリングのアプローチを統合するための豊富なビジネスアジェンダを確立する。
この革命は、豊かで異質なデータソースと、そのインテリジェントな利用能力がなければ不可能であり、主にデータが産業4.0を推進するための基本的な資源となるためである。
このデータ豊かでサイバー物理的でスマートな工場環境から生まれてくる最も実りある研究と実践分野の1つは、データ駆動型のプロセス監視分野である。
本稿では,パッキングマシンの運転状態記録(食品・飲料領域から製造プラントの生産ラインから得られる実データ)の歴史的産業データセットを変換・前処理することにより,産業4.0の応用コンテキストにおいて,一般時系列予測手法と機械学習アルゴリズムについて検討する。
提案手法では,機械の動作状態に関する1つの信号のみを使用して予測を行い,他の動作変数や故障信号や警告信号を考慮せずに予測を行う。
この点において,本手法は3つのユースケースに対して極めて有望な性能を達成できることを示す。
関連論文リスト
- IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
ビデオ異常検出(VAD)は,ビデオフレーム内の異常を認識することを目的とした課題である。
本稿では,産業シナリオにおけるVADに特化して設計された新しいデータセットIPADを提案する。
このデータセットは16の異なる産業用デバイスをカバーし、合成ビデオと実世界のビデオの両方を6時間以上保存している。
論文 参考訳(メタデータ) (2024-04-23T13:38:01Z) - Comprehensive Study Of Predictive Maintenance In Industries Using Classification Models And LSTM Model [0.0]
この研究は、SVM(Support Vector Machine)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、畳み込みニューラルネットワークLSTMベース(Convolutional Neural Network LSTM-based)など、さまざまな機械学習分類手法を掘り下げて、マシンのパフォーマンスを予測し分析することを目的としている。
本研究の主な目的は、精度、精度、リコール、F1スコアなどの要因を考慮して、これらのアルゴリズムの性能を評価し、機械性能を予測・解析することである。
論文 参考訳(メタデータ) (2024-03-15T12:47:45Z) - Machine learning for industrial sensing and control: A survey and
practical perspective [7.678648424345052]
プロセス産業で実際に成功している重要な統計および機械学習技術を特定する。
ソフトセンシングは、統計学と機械学習の手法の多くの産業応用を含んでいる。
データ駆動最適化と制御のための2つの異なるフレーバーについて考察する。
論文 参考訳(メタデータ) (2024-01-24T22:27:04Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Federated Learning for Autoencoder-based Condition Monitoring in the
Industrial Internet of Things [0.07646713951724012]
コンディションモニタリングと予測保守手法は,産業用モノのインターネットにおいて,効率的かつ堅牢な製造サイクルを実現するための重要な柱である。
複数の産業環境にまたがって収集されたさまざまなデータを分析して、機械学習モデルを用いて劣化行動を検出し予測することは、最近の研究で有望な成果を示している。
業界サイト間の知識のコラボレーションと共有は大きな利益をもたらすが、データプライバシーの問題のため、しばしば禁止される。
本稿では,自動エンコーダを用いたフェデレート学習手法を提案する。回転機械の振動センサデータを利用して,オンプレミスで監視機に近いエッジデバイス上での分散トレーニングを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:40:50Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
異常検出は、通常の値空間とは異なる異常状態、インスタンス、あるいはデータポイントを検出する方法を記述する。
本稿では,産業生産における人工知能へのデータ中心のアプローチに寄与する。
論文 参考訳(メタデータ) (2022-09-21T08:14:34Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Predictive Maintenance for Edge-Based Sensor Networks: A Deep
Reinforcement Learning Approach [68.40429597811071]
未計画の設備停止のリスクは、収益発生資産の予測保守によって最小化することができる。
機器に基づくセンサネットワークのコンテキストから予測機器のメンテナンスを行うために,モデルフリーのDeep Reinforcement Learningアルゴリズムを提案する。
従来のブラックボックス回帰モデルとは異なり、提案アルゴリズムは最適なメンテナンスポリシーを自己学習し、各機器に対して実行可能なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2020-07-07T10:00:32Z) - Workload Prediction of Business Processes -- An Approach Based on
Process Mining and Recurrent Neural Networks [0.0]
本稿では,企業の過去のワークロードを再構築し,ニューラルネットワークを用いてワークロードを予測するプロセスマイニング手法を提案する。
我々の手法は、製造に関連するビジネスプロセスの歴史を表すログに依存している。
本手法の評価と実例は,Heraeus Materials SAの管理プロセス上で実施される。
論文 参考訳(メタデータ) (2020-02-14T08:19:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。