論文の概要: Categorical Tools for Natural Language Processing
- arxiv url: http://arxiv.org/abs/2212.06636v1
- Date: Tue, 13 Dec 2022 15:12:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 15:03:43.567500
- Title: Categorical Tools for Natural Language Processing
- Title(参考訳): 自然言語処理のカテゴリー化ツール
- Authors: Giovanni de Felice
- Abstract要約: この論文は、圏論と計算言語学の間の翻訳を発展させている。
3章は構文、意味論、実践論を扱う。
結果として生じる関手モデルは、平衡が言語処理タスクの解であるようなゲームを形成するために構成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis develops the translation between category theory and
computational linguistics as a foundation for natural language processing. The
three chapters deal with syntax, semantics and pragmatics. First, string
diagrams provide a unified model of syntactic structures in formal grammars.
Second, functors compute semantics by turning diagrams into logical, tensor,
neural or quantum computation. Third, the resulting functorial models can be
composed to form games where equilibria are the solutions of language
processing tasks. This framework is implemented as part of DisCoPy, the Python
library for computing with string diagrams. We describe the correspondence
between categorical, linguistic and computational structures, and demonstrate
their applications in compositional natural language processing.
- Abstract(参考訳): この論文は、自然言語処理の基礎としてカテゴリ理論と計算言語学の間の翻訳を発展させている。
3章は構文、意味論、実践論を扱う。
まず、文字列ダイアグラムは形式文法における構文構造の統一モデルを提供する。
第二に、関手は図を論理、テンソル、ニューラルまたは量子計算に変換することによって意味論を計算する。
第三に、結果として得られる関手モデルは、平衡が言語処理タスクの解となるゲームを形成するように構成できる。
このフレームワークは、文字列ダイアグラムで計算するPythonライブラリであるDisCoPyの一部として実装されている。
分類的,言語的,計算的構造間の対応について記述し,その構成自然言語処理への応用を実証する。
関連論文リスト
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - Contextualized word senses: from attention to compositionality [0.10878040851637999]
本稿では,文脈感覚を符号化する透過的,解釈可能,言語的に動機づけられた戦略を提案する。
特に依存関係や選択選好やパラダイムクラスといった意味概念に注意が向けられる。
論文 参考訳(メタデータ) (2023-12-01T16:04:00Z) - Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning [84.12154024070024]
本研究では,数学・記号的推論,自然言語理解,後続の課題に対処するための統合フレームワークとして,自然言語組み込みプログラム(NLEP)を提案する。
我々のアプローチは,構造化知識の自然言語表現を含むデータ構造上の関数を定義する完全なPythonプログラムを生成するよう,言語モデルに促す。
Pythonインタープリタが生成されたコードを実行し、出力をプリントする。
論文 参考訳(メタデータ) (2023-09-19T17:54:21Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Category Theory for Quantum Natural Language Processing [0.0]
この論文は、計算言語学と量子力学の類似に基づく量子自然言語処理(QNLP)モデルを導入する。
テキストと文の文法構造は、絡み合い構造が量子系の状態を接続するのと同じように、単語の意味を接続する。
この抽象的なアナロジーを具体的なアルゴリズムに変換し、文法構造をパラメータ化量子回路のアーキテクチャに変換する。
次に、ハイブリッドな古典量子アルゴリズムを用いて、データ駆動タスクにおける文の意味を回路評価によって計算できるようにモデルを訓練する。
論文 参考訳(メタデータ) (2022-12-13T14:38:57Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
事前学習された言語モデルは、自然言語処理とプログラム理解の両方において素晴らしい性能を示している。
本研究では,プログラムの構文構造を特定するための,最先端の事前訓練モデルの最初の徹底的なベンチマークを行う。
この結果から,既存のプログラミング言語の事前学習手法の限界が指摘され,構文構造をモデル化することの重要性が示唆された。
論文 参考訳(メタデータ) (2022-10-26T04:47:18Z) - A Paradigm Change for Formal Syntax: Computational Algorithms in the
Grammar of English [0.0]
私たちは、プログラム言語を、プロセスベースの英語構文のモデルにします。
機能語と内容語の組み合わせをモデリングのトピックとして選んだ。
モデルの適合性は、アルゴリズムに不可欠な3つの機能特性を導出し、英語文法におけるそれらの存在を確認することによって検証された。
論文 参考訳(メタデータ) (2022-05-24T07:28:47Z) - Oracle Linguistic Graphs Complement a Pretrained Transformer Language
Model: A Cross-formalism Comparison [13.31232311913236]
言語グラフ表現が神経言語モデリングを補完し改善する程度について検討する。
全体としては、セマンティックな選挙区構造は言語モデリングのパフォーマンスに最も有用である。
論文 参考訳(メタデータ) (2021-12-15T04:29:02Z) - Generalized Optimal Linear Orders [9.010643838773477]
言語の逐次構造、特に文中の単語の順序は、人間の言語処理において中心的な役割を果たす。
言語の計算モデルの設計において、デファクトのアプローチは、原文と同じ順序で命令された単語を機械に提示することである。
この研究の本質は、これが望ましいという暗黙の仮定を疑問視し、自然言語処理における語順の考慮に理論的健全性を注入することである。
論文 参考訳(メタデータ) (2021-08-13T13:10:15Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - LogicalFactChecker: Leveraging Logical Operations for Fact Checking with
Graph Module Network [111.24773949467567]
ファクトチェックに論理演算を活用するニューラルネットワークアプローチであるLogicalFactCheckerを提案する。
大規模なベンチマークデータセットであるTABFACT上での最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-04-28T17:04:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。