論文の概要: POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification
- arxiv url: http://arxiv.org/abs/2212.06735v1
- Date: Tue, 13 Dec 2022 17:14:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 13:17:58.886834
- Title: POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification
- Title(参考訳): POPNASv3:画像および時系列分類のためのパレート最適ニューラルネットワーク探索ソリューション
- Authors: Andrea Falanti, Eugenio Lomurno, Danilo Ardagna and Matteo Matteucci
- Abstract要約: 本稿では、異なるハードウェア環境と複数の分類タスクを対象とした逐次モデルベースNASアルゴリズムの第3版について述べる。
提案手法は,異なるタスクに適応するフレキシブルな構造とデータ処理パイプラインを維持しながら,大規模な検索空間内で競合するアーキテクチャを見つけることができる。
画像と時系列の分類データセットで実施された実験は、POPNASv3が多種多様な演算子を探索し、異なるシナリオで提供されるデータの種類に適した最適なアーキテクチャに収束できることを示す。
- 参考スコア(独自算出の注目度): 8.190723030003804
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The automated machine learning (AutoML) field has become increasingly
relevant in recent years. These algorithms can develop models without the need
for expert knowledge, facilitating the application of machine learning
techniques in the industry. Neural Architecture Search (NAS) exploits deep
learning techniques to autonomously produce neural network architectures whose
results rival the state-of-the-art models hand-crafted by AI experts. However,
this approach requires significant computational resources and hardware
investments, making it less appealing for real-usage applications. This article
presents the third version of Pareto-Optimal Progressive Neural Architecture
Search (POPNASv3), a new sequential model-based optimization NAS algorithm
targeting different hardware environments and multiple classification tasks.
Our method is able to find competitive architectures within large search
spaces, while keeping a flexible structure and data processing pipeline to
adapt to different tasks. The algorithm employs Pareto optimality to reduce the
number of architectures sampled during the search, drastically improving the
time efficiency without loss in accuracy. The experiments performed on images
and time series classification datasets provide evidence that POPNASv3 can
explore a large set of assorted operators and converge to optimal architectures
suited for the type of data provided under different scenarios.
- Abstract(参考訳): 自動化機械学習(automl)分野は近年ますます重要になっている。
これらのアルゴリズムは、専門家の知識を必要とせずにモデルを開発することができ、業界における機械学習技術の適用を促進する。
ニューラルネットワーク探索(NAS)は、AI専門家が手作りした最先端のモデルに匹敵するニューラルネットワークアーキテクチャを自律的に生成するためのディープラーニング技術を活用する。
しかし、このアプローチには重要な計算資源とハードウェア投資が必要であり、実際のアプリケーションでは魅力が低下する。
本稿では,pareto-optimal progressive neural architecture search(popnasv3)の第3版について述べる。
本手法は,様々なタスクに適応できる柔軟な構造とデータ処理パイプラインを維持しつつ,大きな検索空間内で競合するアーキテクチャを見つけることができる。
このアルゴリズムは、探索中にサンプリングされたアーキテクチャの数を減らし、精度を損なうことなく時間効率を大幅に改善する。
画像と時系列分類データセットで実施された実験は、POPNASv3が膨大な数の演算子を探索し、異なるシナリオで提供されるデータの種類に適した最適なアーキテクチャに収束できることを示す。
関連論文リスト
- EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [54.99121380536659]
眼球運動バイオメトリックスは、高い安全性の識別により注目されている。
深層学習(DL)モデルは近年,眼球運動認識に成功している。
DLアーキテクチャはまだ人間の事前知識によって決定されている。
眼球運動認識のためのDLアーキテクチャを自動設計する階層的微分可能なアーキテクチャ探索アルゴリズムEM-DARTSを提案する。
論文 参考訳(メタデータ) (2024-09-22T13:11:08Z) - Combining Neural Architecture Search and Automatic Code Optimization: A Survey [0.8796261172196743]
ハードウェア対応ニューラルアーキテクチャサーチ(HW-NAS)と自動コード最適化(ACO)の2つの特長がある。
HW-NASは正確だがハードウェアフレンドリなニューラルネットワークを自動設計する。
この調査では、これらの2つのテクニックをひとつのフレームワークで組み合わせた最近の研究について調査する。
論文 参考訳(メタデータ) (2024-08-07T22:40:05Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
設計したハイパーカーネルを利用して,構造パラメータを直接生成することを提案する。
我々は1次元または3次元の畳み込みを伴う画素レベルの分類と画像レベルの分類を別々に行う3種類のネットワークを得る。
6つの公開データセットに関する一連の実験は、提案手法が最先端の結果を得ることを示した。
論文 参考訳(メタデータ) (2023-04-23T17:27:40Z) - Pareto-aware Neural Architecture Generation for Diverse Computational
Budgets [94.27982238384847]
既存の手法は、しばしば各目標予算に対して独立したアーキテクチャ探索プロセスを実行する。
提案するニューラルアーキテクチャジェネレータ(PNAG)は,任意の予算に対して,推論によって最適なアーキテクチャを動的に生成する。
このような共同探索アルゴリズムは、全体の検索コストを大幅に削減するだけでなく、結果も改善する。
論文 参考訳(メタデータ) (2022-10-14T08:30:59Z) - POPNASv2: An Efficient Multi-Objective Neural Architecture Search
Technique [7.497722345725035]
本稿では,POPNASv2と呼ばれるパレート最適プログレッシブ・ニューラル・アーキテクチャ・サーチの新バージョンを提案する。
私たちのアプローチは、最初のバージョンを強化し、パフォーマンスを改善します。
POPNASv2は平均4倍の検索時間でPNASライクな性能を実現することができる。
論文 参考訳(メタデータ) (2022-10-06T14:51:54Z) - Surrogate-assisted Multi-objective Neural Architecture Search for
Real-time Semantic Segmentation [11.866947846619064]
ニューラルアーキテクチャサーチ(NAS)は、アーキテクチャ設計を自動化するための有望な道として登場した。
セマンティックセグメンテーションにNASを適用する際の課題を解決するために,サロゲート支援多目的手法を提案する。
提案手法は,人手による設計と他のNAS手法による自動設計の両方により,既存の最先端アーキテクチャを著しく上回るアーキテクチャを同定することができる。
論文 参考訳(メタデータ) (2022-08-14T10:18:51Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREAは、トレーニングなしメトリクスの最適化組み合わせを利用してアーキテクチャをランク付けする、独自のセルベースの進化NASアルゴリズムである。
本実験はNAS-Bench-101とNATS-Benchの共通ベンチマークを用いて,フリーレアがモデル自動設計のための高速で効率的かつ効果的な探索手法であることを実証した。
論文 参考訳(メタデータ) (2022-06-17T11:16:28Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
本稿では,タスク性能と「イントロスペクタビリティ」の両方を最適化するフレームワークを提案する。
タスクエラーとイントロスペクタビリティを共同で最適化することは、エラー内で実行されるより不整合でデバッグ可能なアーキテクチャをもたらすことを実証する。
論文 参考訳(メタデータ) (2021-12-16T05:50:55Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
ResNetやNASNetのような現代の畳み込みネットワークは、多くのコンピュータビジョンアプリケーションで最先端の結果を得た。
これらのネットワークは、同じ解像度で表現を操作するレイヤのセットであるステージで構成されている。
各ステージにおけるレイヤー数の増加はネットワークの予測能力を向上させることが示されている。
しかし、結果として得られるアーキテクチャは、浮動小数点演算、メモリ要求、推論時間の観点から計算的に高価になる。
論文 参考訳(メタデータ) (2020-04-23T14:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。